首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26篇
  免费   1篇
  27篇
  2023年   1篇
  2021年   1篇
  2017年   2篇
  2015年   1篇
  2014年   2篇
  2013年   2篇
  2012年   4篇
  2011年   3篇
  2009年   2篇
  2008年   1篇
  2007年   2篇
  2006年   1篇
  2004年   1篇
  2002年   1篇
  1999年   1篇
  1998年   2篇
排序方式: 共有27条查询结果,搜索用时 0 毫秒
1.
Messenger RNA encoded signals that are involved in programmed -1 ribosomal frameshifting (-1 PRF) are typically two-stemmed hairpin (H)-type pseudoknots (pks). We previously described an unusual three-stemmed pseudoknot from the severe acute respiratory syndrome (SARS) coronavirus (CoV) that stimulated -1 PRF. The conserved existence of a third stem–loop suggested an important hitherto unknown function. Here we present new information describing structure and function of the third stem of the SARS pseudoknot. We uncovered RNA dimerization through a palindromic sequence embedded in the SARS-CoV Stem 3. Further in vitro analysis revealed that SARS-CoV RNA dimers assemble through ‘kissing’ loop–loop interactions. We also show that loop–loop kissing complex formation becomes more efficient at physiological temperature and in the presence of magnesium. When the palindromic sequence was mutated, in vitro RNA dimerization was abolished, and frameshifting was reduced from 15 to 5.7%. Furthermore, the inability to dimerize caused by the silent codon change in Stem 3 of SARS-CoV changed the viral growth kinetics and affected the levels of genomic and subgenomic RNA in infected cells. These results suggest that the homodimeric RNA complex formed by the SARS pseudoknot occurs in the cellular environment and that loop–loop kissing interactions involving Stem 3 modulate -1 PRF and play a role in subgenomic and full-length RNA synthesis.  相似文献   
2.
3.
Pigment epithelium‐derived factor (PEDF) is upregulated in obese rodents and is involved in the development of insulin resistance (IR). We aim to explore the relationships between PEDF, adiposity, insulin sensitivity, and cardiovascular risk factors in obese women with polycystic ovary syndrome (PCOS) and weight‐matched controls and to examine the impact of endurance exercise training on PEDF. This prospective cohort intervention study was based at a tertiary medical center. Twenty obese PCOS women and 14 non‐PCOS weight‐matched women were studied at baseline. PEDF, cardiometabolic markers, detailed body composition, and euglycemic—hyperinsulinemic clamps were performed and measures were repeated in 10 PCOS and 8 non‐PCOS women following 12 weeks of intensified aerobic exercise. Mean glucose infusion rate (GIR) was 31.7% lower (P = 0.02) in PCOS compared to controls (175.6 ± 96.3 and 257.2 ± 64.3 mg.m?2.min?1) at baseline, yet both PEDF and BMI were similar between groups. PEDF negatively correlated to GIR (r = ?0.41, P = 0.03) and high‐density lipoprotein (HDL) (r = ?0.46, P = 0.01), and positively to cardiovascular risk factors, systolic (r = 0.41, P = 0.02) and diastolic blood pressure (r = 0.47, P = 0.01) and triglycerides (r = 0.49, P = 0.004). The correlation with GIR was not significant after adjusting for fat mass (P = 0.07). Exercise training maintained BMI and increased GIR in both groups; however, plasma PEDF was unchanged. In summary, PEDF is not elevated in PCOS, is not associated with IR when adjusted for fat mass, and is not reduced by endurance exercise training despite improved insulin sensitivity. PEDF was associated with cardiovascular risk factors, suggesting PEDF may be a marker of cardiovascular risk status.  相似文献   
4.
Obtaining homogeneous population of natively folded RNAs is a crippling problem encountered when preparing RNAs for structural or enzymatic studies. Most of the traditional methods that are employed to prepare large quantities of RNAs involve procedures that partially denature the RNA. Here, we present a simple strategy using 'click' chemistry to couple biotin to a 'caged' photocleavable (PC) guanosine monophosphate (GMP) in high yield. This biotin-PC GMP, accepted by T7 RNA polymerase, has been used to transcribe RNAs ranging in size from 27 to 527 nt. Furthermore we show, using an in-gel fluorescence assay, that natively prepared 160 and 175 kDa minimal group II intron ribozymes have enhanced catalytic activity over the same RNAs, purified via denaturing conditions and refolded. We conclude that large complex RNAs prepared by non-denaturing means form a homogeneous population and are catalytically more active than those prepared by denaturing methods and subsequent refolding; this facile approach for native RNA preparation should benefit synthesis of RNAs for biophysical and therapeutic applications.  相似文献   
5.
PGRP-S (Tag7) is an innate immunity protein involved in the antimicrobial defense systems, both in insects and in mammals. We have previously shown that Tag7 specifically interacts with several proteins, including Hsp70 and the calcium binding protein S100A4 (Mts1), providing a number of novel cellular functions. Here we show that Tag7–Mts1 complex causes chemotactic migration of lymphocytes, with NK cells being a preferred target. Cells of either innate immunity (neutrophils and monocytes) or acquired immunity (CD4+ and CD8+ lymphocytes) can produce this complex, which confirms the close connection between components of the 2 branches of immune response.  相似文献   
6.
7.
Characterization of the structure and dynamics of nucleic acids by NMR benefits significantly from position specifically labeled nucleotides. Here an E. coli strain deficient in the transketolase gene (tktA) and grown on glucose that is labeled at different carbon sites is shown to facilitate cost-effective and large scale production of useful nucleotides. These nucleotides are site specifically labeled in C1′ and C5′ with minimal scrambling within the ribose ring. To demonstrate the utility of this labeling approach, the new site-specific labeled and the uniformly labeled nucleotides were used to synthesize a 36-nt RNA containing the catalytically essential domain 5 (D5) of the brown algae group II intron self-splicing ribozyme. The D5 RNA was used in binding and relaxation studies probed by NMR spectroscopy. Key nucleotides in the D5 RNA that are implicated in binding Mg2+ ions are well resolved. As a result, spectra obtained using selectively labeled nucleotides have higher signal-to-noise ratio compared to those obtained using uniformly labeled nucleotides. Thus, compared to the uniformly 13C/15N-labeled nucleotides, these specifically labeled nucleotides eliminate the extensive 13C–13C coupling within the nitrogenous base and ribose ring, give rise to less crowded and more resolved NMR spectra, and accurate relaxation rates without the need for constant-time or band-selective decoupled NMR experiments. These position selective labeled nucleotides should, therefore, find wide use in NMR analysis of biologically interesting RNA molecules.  相似文献   
8.
Domain 5 (D5) is absolutely required for all catalytic functions of group II introns. Here we describe the solution NMR structure, electrostatic calculations, and detailed magnesium ion-binding surface of D5 RNA from the Pylaiella littoralis large ribosomal RNA intron (D5-PL). The overall structure consists of a hairpin capped by a GNRA tetraloop. The stem is divided into lower and upper helices of 8 and 5 bp, respectively, separated by an internal bulge. The D5-PL internal bulge nucleotides stack into the helical junction, resulting in a coupling between the bulge A25 and the closing base pair (G8-C27) of the lower helix. Comparison of the D5-PL structure to previously reported related structures indicates that our structure is most similar, in the helical regions, to the crystal structure of D5 from yeast Ai5gamma (D5-Ai5gamma) and the NMR structure of the U6 snRNA stem-loop region. Our structure differs in many respects from both the NMR and X-ray structures of D5-Ai5gamma in the bulge region. Electrostatic calculations and NMR chemical shift perturbation analyses reveal magnesium ion-binding sites in the tetraloop, internal bulge, and the AGC triad in the lower stem. Our results suggest that the structure, electrostatic environment, and the magnesium ion-binding sites within the tetraloop, bulge, and triad regions are conserved features of the splicing machinery of both the group II introns and the spliceosome that are likely key for catalytic function.  相似文献   
9.
We present an efficient computational architecture designed using supervised machine learning model to predict amyloid fibril forming protein segments, named AmylPepPred. The proposed prediction model is based on bio-physio-chemical properties of primary sequences and auto-correlation function of their amino acid indices. AmylPepPred provides a user friendly web interface for the researchers to easily observe the fibril forming and non-fibril forming hexmers in a given protein sequence. We expect that this stratagem will be highly encouraging in discovering fibril forming regions in proteins thereby benefit in finding therapeutic agents that specifically aim these sequences for the inhibition and cure of amyloid illnesses.

Availability

AmylPepPred is available freely for academic use at www.zoommicro.in/amylpeppred  相似文献   
10.
This study was aimed to assess the effects of calcium lactate (CL) on quality, shelf-life and storage physiology of bitter gourd. Fruits were dipped in the aqueous solution of CL (50, 75, and 100 mM) and stored at 10 °C and 85–95% relative humidity (RH). The changes in physical, biochemical and enzymological parameters were recorded at five days interval. The results showed that in CL@100 mM treated fruit, physiological loss in weight (PLW) and decay incidence were minimized. Conversely, their firmness, total phenolics, antioxidants and total chlorophyll retained at higher side. The CL @ 75 mM was able to retain higher ascorbic acid up to 20 days while CL@100 mM was effective in controlling pectin methylesterase (PME) activity and increasing the inhibitory activity of α-amylase and α-glucosidase. Therefore, our observations suggested that by applying CL@100 mM, 5 days extra (20 days) shelf-life of bitter gourd fruit can be achieved with notable retention of biochemical compounds over untreated fruit (15 days with poor retention of important nutrients).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号