首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   45篇
  免费   0篇
  2021年   2篇
  2019年   4篇
  2018年   1篇
  2017年   1篇
  2015年   2篇
  2014年   2篇
  2013年   1篇
  2011年   3篇
  2010年   3篇
  2009年   1篇
  2007年   2篇
  2005年   1篇
  2004年   2篇
  2003年   3篇
  2002年   5篇
  2000年   2篇
  1994年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1977年   1篇
  1976年   1篇
  1975年   2篇
  1974年   1篇
  1968年   1篇
排序方式: 共有45条查询结果,搜索用时 15 毫秒
1.
Raman spectra have been obtained for dTMP and its complex with CH3Hg (II) in aqueous solution as a function of pH. Difference spectroscopy is employed to increase the sensitivity of the Raman technique. The binding reaction is essentially quantitative from pH 3 to 9, and the value of the equilibrium constant for CH3HgOH2+ + dThd in equilibrium CH3Hg(dThdH--1) + H30+ is estimated from intensity measurements to be 0.6 in reasonable agreement with an earlier value based upon uv spectrophotometric data. Binding is to N(3) with substitution of CH3Hg+ for the proton. A similar reaction occurs with 1-MeThy. Raman spectra for aqueous and crystalline 1-MeThy and for the complex CH3Hg(1-MeThyH--1) are reported. The spectrum of crystalline Hg(1-MeThyH--1)2, for which the crystal structure is known, also was obtained for comparison. Raman difference spectroscopy was used to confirm that CH3Hg (II) binds to N(3) of dTMP and N(1) of GMP at r = 0.2 (MeHg+: phosphate) ratios with mixtures of GMP + CMP + AMP + dTMP. In contrast, native calf thymus DNA does not appear to bind CH3Hg(II) at these sites at r = 0.15, although no significant amount of free CH3HgOH is present. With r = 0.3, extensive binding occurs both to the Thy and Gua bases. Raman difference spectroscopy is a valuable technique for studying the binding of ions and molecules to polynucleotides in moderately dilute aqueous solution.  相似文献   
2.
Aureobasidium pullulans NRRL 6220 synthesized polysaccharide most actively in media containing sucrose, fructose or maltose with (NH4)2SO4 (0.6 g/l) or ammonium acetate giving greatest yields of the polysaccharide. With (NH4)2SO4 at 1.2 g/l, production of polysaccharide was decreased considerably. Polysaccharide production was highest with an initial pH of 6.5 while biomass formation was better below an initial pH of 5.5. Optimum phosphate concentration for polysaccharide production was 0.03 m.S.M. Badr-Eldin, H.G. El-Masry and O.A. Abd El-Rahman are with the Microbial Chemistry Department, National Research Center, Dokki, Cairo, Egypt; F.H.A. Mohamad is with the Chemical Engineering and Pilot Plant Department, National Research Center, Dokki, Cairo, Egypt. O.M. El-Tayeb is with the Microbiology Department, Faculty of Pharmacy, Cairo University, Egypt.  相似文献   
3.
The intrinsic innervation of the anterior two thirds of the tongue in adult dogs of both sexes was studied in paraffin sections stained with Bodian, Holmes, cholinesterase and other stains. In all the sections, a subepithelial plexus of nerve fibres and cells was always seen on the dorsum of the tongue. Nerve endings were seen extending in between the epithelial cells on the dorsum of the tongue. The nerve cells were usually spindle-shaped and collected to form numerous ganglia in the submucosa. There were other ganglia in the tongue whose structure was very much similar to terminal autonomic ganglia. The significance of the ganglia consisting of biopolar nerve cells is being discussed.  相似文献   
4.
S Mansy  R S Tobias 《Biochemistry》1975,14(13):2952-2961
Raman difference spectrophotometry reveals that CH3HgII binds quantitatively to N(1) of inosine at pH 8, substituting for the proton. When N(1) is saturated, binding occurs at a second site. Measurements of the 1-H nuclear magnetic resonance spectra of both inosine and of CH3Hg-II are in agreement with the N(1) binding and indicate that the second site for mercuriation is N(7). This second binding reaction is observed to increase the rate of exchange of the C(8) hydrogen with solvent, consistent with results observed for alkylation at N(7). Coordination of the electrophilic CH3Hg-II to N(7) increases the acidity of H(8), facilitating OHminus--catalyzed proton abstraction and reprotonation by themedium. For comparison, the reaction of CH3Hg-II with [8-2-H]inosine has been studied. Displacement of the N(1) hydrogen upon mercuriation of inosine causes a significant electron delocalization into the ring, increasing the basicity of N(7), and accounting for the synergic effect in metal binding observed originally by Simpson. In contrast, 1-methylinosine interacts only slightly with CH3Hg-II at pH 8. Coordination appears to be at N(7), since H(8) again is observed to exchange rapidly with solvent protons. In acidic solution, pH less than 2, binding to inosine is almost quantitative and exclusively to N(7). The behavior of CH3Hg-II is compared with that of Pt(II) and with Ni(II), Co(II), AND Zn(II). A brief comparison is made among ultraviolet absorption spectrophotometry, nuclear magnetic resonance (NMR), and Raman difference spectrophotometry for studying reactions of nucleosides and nucleotides.  相似文献   
5.
6.
Members of the IscU family of proteins are among the most conserved of all protein groups, extending across all three kingdoms of life. IscU serves as a scaffold for the assembly of intermediate iron-sulfur cluster centers and further mediates delivery to apo protein targets. Several proteins that mediate delivery of single metal ions to apo targets (termed metallochaperones) have recently been characterized structurally. Each displays a ferredoxin-like betaalphabetabetaalphabeta motif as a structural core. Assembly and delivery of a polynuclear iron-sulfur cluster is, however, a more complex pathway and presumably would demand a distinctive protein mediator. Here, we demonstrate Thermotoga maritima IscU (Tm IscU) to display unique structural and motional characteristics that distinguish it from other members of this class of proteins. In particular, IscU adopts a mobile, physiologically relevant, molten globule-like state that is vastly different from the previously identified ferredoxin-like fold that has thus far been characterized for other metallochaperones. The secondary structural content of Tm IscU is consistent with previous circular dichroism measurements on apo and holo protein, consisting of six alpha-helices and three beta-strands, the latter forming an anti-parallel beta-sheet. Extensive dynamics studies are consistent with a protein that has reasonably well defined secondary structural elements, but with a tertiary structure that is fluxional among widely different conformational arrangements. Analogous conformational flexibility does not exist in other structurally characterized metallochaperones; however, such a dynamic molecule may account for the lack of long-range NOEs, and allow both for the flexibility that is necessary for the multiple roles of Fe-S cluster assembly, and recognition and delivery of that cluster to a target protein. Additionally, the fluxionality of IscU is unique in that the protein appears to be more compact (based on 1H/2H exchange, R1, R2, and NOE data) but yet more fluid (lack of long-range NOEs) than typical molten globule proteins.  相似文献   
7.

Background

Tumoral heterogeneity is a major determinant of resistance in solid tumors. FDG-PET/CT can identify early during chemotherapy non-responsive lesions within the whole body tumor load. This prospective multicentric proof-of-concept study explores intra-individual metabolic response (mR) heterogeneity as a treatment efficacy biomarker in chemorefractory metastatic colorectal cancer (mCRC).

Methods

Standardized FDG-PET/CT was performed at baseline and after the first cycle of combined sorafenib (600mg/day for 21 days, then 800mg/day) and capecitabine (1700 mg/m²/day administered D1-14 every 21 days). MR assessment was categorized according to the proportion of metabolically non-responding (non-mR) lesions (stable FDG uptake with SUVmax decrease <15%) among all measurable lesions.

Results

Ninety-two patients were included. The median overall survival (OS) and progression-free survival (PFS) were 8.2 months (95% CI: 6.8–10.5) and 4.2 months (95% CI: 3.4–4.8) respectively. In the 79 assessable patients, early PET-CT showed no metabolically refractory lesion in 47%, a heterogeneous mR with at least one non-mR lesion in 32%, and a consistent non-mR or early disease progression in 21%. On exploratory analysis, patients without any non-mR lesion showed a significantly longer PFS (HR 0.34; 95% CI: 0.21–0.56, P-value <0.001) and OS (HR 0.58; 95% CI: 0.36–0.92, P-value 0.02) compared to the other patients. The proportion of non-mR lesions within the tumor load did not impact PFS/OS.

Conclusion

The presence of at least one metabolically refractory lesion is associated with a poorer outcome in advanced mCRC patients treated with combined sorafenib-capecitabine. Early detection of treatment-induced mR heterogeneity may represent an important predictive efficacy biomarker in mCRC.

Trial Registration

ClinicalTrials.gov NCT01290926  相似文献   
8.
9.
The kinetics of electron transfer from reduced high-potential iron-sulfur protein (HiPIP) to the photooxidized tetraheme cytochrome c subunit (THC) bound to the photosynthetic reaction center (RC) from the purple sulfur bacterium Allochromatium vinosum were studied under controlled redox conditions by flash absorption spectroscopy. At ambient redox potential Eh = +200 mV, where only the high-potential (HP) hemes of the THC are reduced, the electron transfer from HiPIP to photooxidized HP heme(s) follows second-order kinetics with rate constant k = (4.2 +/- 0.2) 10(5) M(-1) s(-1) at low ionic strength. Upon increasing the ionic strength, k increases by a maximum factor of ca. 2 at 640 mM KCl. The role of Phe48, which lies on the external surface of HiPIP close to the [Fe4S4] cluster and presumably on the electron transfer pathway to cytochrome heme(s), was investigated by site-directed mutagenesis. Substitution of Phe48 with arginine, aspartate, and histidine completely prevents electron donation. Conversely, electron transfer is still observed upon substitution of Phe48 with tyrosine and tryptophan, although the rate is decreased by more than 1 order of magnitude. These results suggest that Phe48 is located on a key protein surface patch essential for efficient electron transfer, and that the presence of an aromatic hydrophobic residue on the putative electron-transfer pathway plays a critical role. This conclusion was supported by protein docking calculations, resulting in a structural model for the HiPIP-THC complex, which involves a docking site close to the LP heme farthest from the bacteriochlorophyll special pair.  相似文献   
10.
Cellular and organellar membranes are dynamic materials that underlie many aspects of cell biology. Biological membranes have long been thought of as elastic materials with respect to bending deformations. A wealth of theory and experimentation on pure phospholipid membranes provides abundant support for this idea. However, biological membranes are not composed solely of phospholipids—they also incorporate a variety of amphiphilic molecules that undergo rapid transbilayer flip-flop. Here we describe several experimental systems that demonstrate deformation-induced molecular flip-flop. First we use a fluorescence assay to track osmotically controlled membrane deformation in single component fatty acid vesicles, and show that the relaxation of the induced bending stress is mediated by fatty acid flip-flop. We then look at two-component phospholipid/cholesterol composite vesicles. We use NMR to show that the steady-state rate of interleaflet diffusion of cholesterol is fast relative to biological membrane remodeling. We then use a Förster resonance energy transfer assay to detect the transbilayer movement of cholesterol upon deformation. We suggest that our results can be interpreted by modifying the area difference elasticity model to account for the time-dependent relaxation of bending energy. Our findings suggest that rapid interleaflet diffusion of cholesterol may play a role in membrane remodeling in vivo. We suggest that the molecular characteristics of sterols make them evolutionarily preferred mediators of stress relaxation, and that the universal presence of sterols in the membranes of eukaryotes, even at low concentrations, reflects the importance of membrane remodeling in eukaryotic cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号