首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   1篇
  2009年   1篇
  2006年   1篇
  2004年   3篇
  2003年   2篇
  1984年   1篇
排序方式: 共有8条查询结果,搜索用时 31 毫秒
1
1.
Feng J  Mehta VB  El-Assal ON  Wu D  Besner GE 《Peptides》2006,27(6):1589-1596
Heparin-binding EGF-like growth factor (HB-EGF), a member of the epidermal growth factor (EGF) family, can protect intestinal epithelial cells from various forms of injury in vitro and attenuate intestinal ischemia/reperfusion damage in vivo. With the goal of eventual clinical use of HB-EGF to protect the intestines from injury in neonates, children, and adults, the pharmacokinetics and biodistribution of 125I-labeled HB-EGF were investigated. After intravenous bolus, HB-EGF had a distribution half-life of 0.8 min and an elimination half-life of 26.67 min. After gastric administration, the bioavailability was 7.8%, with a 2.38 h half-life in the absorption phase and an 11.13 h half-life in the elimination phase. After intravenous dosing, most radioactivity was found in the plasma, liver, kidneys, bile, and urine, whereas it was mainly distributed in the gastrointestinal tract after intragastric administration. The degradation of 125I-HB-EGF in plasma from newborn rats was lower than that in adult rats after gastric administration. This supports the feasibility of enteral administration of HB-EGF in the treatment of gastrointestinal diseases, including newborns afflicted with necrotizing enterocolitis.  相似文献   
2.
Arabidopsis trichomes are unicellular, branched structures that have highly constrained requirements for the cytoskeleton. The 'distorted group' genes function downstream from microtubule-based branch initiation, and are required during the actin-dependent phase of polarized stalk and branch expansion. Of the eight known 'distorted group' genes, a subset encode homologs of ARP2/3 complex subunits. In eukaryotic cells, the seven-protein ARP2/3 complex nucleates actin filament networks that push on the plasma membrane and organelles. In plants cells, the existence and function of an ARP2/3 complex is unclear. In this paper, we report that DISTORTED2 (DIS2) encodes a paralogue of the ARP2/3 complex subunit ARPC2. DIS2 has ARPC2 activity, based on its ability to rescue the growth defects of arpc2 (arc35Delta) null yeast cells. Like known ARPC2s, DIS2 physically interacts with ARPC4. Mutations in DIS2 cause a distorted trichome phenotype, defects in cell-cell adhesion, and a modest reduction in shoot FW. The actin cytoskeleton in dis2 trichomes is extensive, but developing branches fail to generate and maintain highly organized cytoplasmic actin bundles.  相似文献   
3.
Requirements for Arabidopsis ATARP2 and ATARP3 during epidermal development   总被引:5,自引:0,他引:5  
Plant cells employ the actin cytoskeleton to stably position organelles, as tracks for long distance transport, and to reorganize the cytoplasm in response to developmental and environmental cues. While diverse classes of actin binding proteins have been implicated in growth control, the mechanisms of cytoskeletal reorganization and the cellular functions of specific actin filament arrays are unclear. Arabidopsis trichome morphogenesis includes distinct requirements for the microtubule and actin filament cytoskeletons. It also is a genetically tractable process that is providing new knowledge about cytoskeleton function in plants. The "distorted group" of mutants defines a class of at least eight genes that are required during the actin-dependent phase of trichome growth. Using map-based cloning and a candidate gene approach, we identified mutations in ARP3 (ATARP3) and ARP2 (ATARP2) genes as the cause of the distorted1 (dis1) and wurm (wrm) phenotypes, respectively. ARP2 and ARP3 are components of the evolutionarily conserved ARP2/3 complex that nucleates actin filament polymerization [3]. Mutations in DIS1 and WRM caused severe trichome growth defects but had relatively mild effects on shoot development. DIS1 rescued the phenotype of Deltaarp3 when overexpressed in S. cerevisiae. Developing dis1 trichomes had defects in cytoplasmic actin bundle organization and reduced relative amounts of cytoplasmic actin filaments in developing branches.  相似文献   
4.
In migrating cells, the actin filament nucleation activity of ARP2/3 is an essential component of dynamic cell shape change and motility. In response to signals from the small GTPase Rac1, alterations in the composition and/or subcellular localization of the WAVE complex lead to ARP2/3 activation. The human WAVE complex subunit, WAVE1/SCAR1, was first identified in Dictyostelium and is a direct ARP2/3 activator. In the absence of an intact WAVE complex, SCAR/WAVE protein is destabilized. Although the composition of the five-subunit WAVE complex is well characterized, the means by which individual subunits and fully assembled WAVE complexes regulate ARP2/3 in vivo are unclear. The molecular genetics of trichome distortion in Arabidopsis is a powerful system to understand how signaling pathways and ARP2/3 control multicellular development. In this paper we prove that the GNARLED gene encodes a homolog of the WAVE subunit NAP125. Despite the moderate level of amino acid identity between Arabidopsis and human NAP125, both homologs were functionally interchangeable in vivo and interacted physically with the putative Arabidopsis WAVE subunit ATSRA1. gnarled trichomes had nearly identical cell shape and actin cytoskeleton phenotypes when compared to ARP2/3 subunit mutants, suggesting that GRL positively regulates ARP2/3.  相似文献   
5.
In growing plant cells, the combined activities of the cytoskeleton, endomembrane, and cell wall biosynthetic systems organize the cytoplasm and define the architecture and growth properties of the cell. These biosynthetic machineries efficiently synthesize, deliver, and recycle the raw materials that support cell expansion. The precise roles of the actin cytoskeleton in these processes are unclear. Certainly, bundles of actin filaments position organelles and are a substrate for long-distance intracellular transport, but the functional linkages between dynamic actin filament arrays and the cell growth machinery are poorly understood. The Arabidopsis (Arabidopsis thaliana) “distorted group” mutants have defined protein complexes that appear to generate and convert small GTPase signals into an Actin-Related Protein2/3 (ARP2/3)-dependent actin filament nucleation response. However, direct biochemical knowledge about Arabidopsis ARP2/3 and its cellular distribution is lacking. In this paper, we provide biochemical evidence for a plant ARP2/3. The plant complex utilizes a conserved assembly mechanism. ARPC4 is the most critical core subunit that controls the assembly and steady-state levels of the complex. ARP2/3 in other systems is believed to be mostly a soluble complex that is locally recruited and activated. Unexpectedly, we find that Arabidopsis ARP2/3 interacts strongly with cell membranes. Membrane binding is linked to complex assembly status and not to the extent to which it is activated. Mutant analyses implicate ARP2 as an important subunit for membrane association.In plant cells, the actin cytoskeleton forms an intricate network of polymers that organizes the cytoplasm and defines the long-distance intracellular trafficking patterns of the cell. The actin network is critical not only for tip-growing cells (for review, see Cole and Fowler, 2006; Lovy-Wheeler et al., 2007) but also during the coordinated cell expansion that occurs in cells that utilize a diffuse growth mechanism (for review, see Wasteneys and Galway, 2003; Smith and Oppenheimer, 2005). For example, the polarized diffuse growth of leaf trichomes is highly sensitized to actin cytoskeleton disruption (Mathur et al., 1999; Szymanski et al., 1999), and a recent analysis of Arabidopsis (Arabidopsis thaliana) ACTIN mutants revealed widespread cell swelling and isotropic expansion in numerous cell types in the root and shoot (Kandasamy et al., 2009). The actin network is dynamic. The array reorganizes during cell morphogenesis (Braun et al., 1999; Szymanski et al., 1999) and in response to endogenous (Lemichez et al., 2001) and external (Hardham et al., 2007) cues. A major research goal is to better understand not only how plant cells convert G-actin subunits to particular actin filament arrays but also how the actin network interacts with the cellular growth machinery during cell expansion.This is a difficult problem to solve, because in expanding vacuolated cells the actin array adopts numerous configurations and consists of dense meshworks of cortical actin filaments and bundles (Baluska et al., 2000), thick actin bundles that penetrate the central vacuole (Higaki et al., 2006), and meshworks of filaments and bundles that surround the nucleus and chloroplasts (Kandasamy and Meagher, 1999; Collings et al., 2000). The spatial relationships between these actin networks and localized cell expansion are not obvious. Certainly, the plasma membrane-cell wall interface is a critical location for the regulated delivery and fusion of vesicles containing cell wall polysaccharides. Frequent reports of localized domains of enriched cortical actin signal at regions of presumed localized cell expansion have led to the widely held view that the cortical actin array creates local tracks for vesicle-mediated secretion (for review, see Smith and Oppenheimer, 2005; Hussey et al., 2006). In one study, the dynamics of actin filaments were analyzed in living hypocotyl epidermal cells that utilize a diffuse growth mechanism (Staiger et al., 2009). In this case, individual actin filaments are very unstable and randomly oriented; therefore, the precise relationships between cortical F-actin, vesicle delivery, and cell shape change remain obscure. The best known function for the actin cytoskeleton is that of a track for myosin-dependent vesicle and organelle trafficking (Shimmen, 2007). The actin bundle network mediates the transport of cargo between endomembrane compartments (Geldner et al., 2001; Kim et al., 2005) and the long-distance actomyosin transport of a variety of organelles, including the Golgi (Nebenfuhr et al., 1999; Peremyslov et al., 2008; Prokhnevsky et al., 2008). Generation of distributed (Gutierrez et al., 2009; Timmers et al., 2009) and localized (Wightman and Turner, 2008) actin bundle networks appears to define early steps in the trafficking of Golgi-localized cellulose synthase complexes to the sites of primary and secondary wall synthesis, respectively.Plant cells employ diverse collections of G-actin-binding proteins, actin filament nucleators, and actin-bundling and cross-linking proteins to generate and remodel the F-actin network (for review, see Staiger and Blanchoin, 2006). One actin filament nucleator, termed the Actin-Related Protein2/3 (ARP2/3) complex, controls numerous aspects of plant morphogenesis and development. The vertebrate complex consists of the actin-related proteins ARP2 and ARP3 and five other unrelated proteins termed ARPC1 to ARPC5, in order of decreasing mass. ARP2/3 in isolation is inactive, but in the presence of proteins termed nucleation-promoting factors such as WAVE/SCAR (for WASP family Verprolin homologous/Suppressor of cAMP Repressor), ARP2/3 is converted into an efficient actin filament-nucleating machine (for review, see Higgs and Pollard, 2001; Welch and Mullins, 2002). In mammalian cells, ARP2/3 activities are linked to membrane dynamics. Keratocytes that crawl persistently on a solid substrate appear to use ARP2/3-generated dendritic actin filament networks at the leading edge to either drive or consolidate plasma membrane protrusion (Pollard and Borisy, 2003; Ji et al., 2008). In many vertebrate cell types, ARP2/3 has a strong punctate intracellular localization (Welch et al., 1997; Strasser et al., 2004), which could reflect hypothesized activities at the Golgi (Stamnes, 2002) or late endosomal (Fucini et al., 2002; Holtta-Vuori et al., 2005) compartment.Genetic studies in plants reveal nonessential but widespread functions for ARP2/3. In the moss Physcomitrella patens, the ARPC4 and ARPC1 subunit genes are critical during tip growth of protonemal filaments (Harries et al., 2005; Perroud and Quatrano, 2006). In Arabidopsis, loss of either ARP2/3 subunit gene or mutations in WAVE complex genes that positively regulate ARP2/3 cause complicated syndromes, including the loss of polarized diffuse growth throughout the shoot epidermis, defective cell-cell adhesion, and decreased hypocotyl elongation (for review, see Szymanski, 2005). Altered responses to exogenous Suc (Li et al., 2004; Zhang et al., 2008) and reduced root elongation (Dyachok et al., 2008) are also reported for wave and arp2/3 strains. In higher plants, the involvement of ARP2/3 in tip growth and root hair development is more subtle. In Lotus japonicus, mutation of NAP1 and PIR1, known positive regulators of ARP2/3 (Basu et al., 2004; Deeks et al., 2004; El-Assal et al., 2004a), causes incompletely penetrant root hair phenotypes, but in the presence of symbiotic bacteria, the mutants have defective infection threads and reduced root nodule formation. Arabidopsis arp2/3 mutants do not have obvious tip growth defects in pollen tubes or root hairs, but in the presence of GFP:TALIN (Mathur et al., 2003b) and in double mutant combinations with the actin-binding protein CAP1 (Deeks et al., 2007), the effects of ARP2/3 on root hair growth are unmasked.In Arabidopsis, the genetics of the positive regulation of ARP2/3 are well characterized and appear to occur solely through another heteromeric complex termed WAVE (Eden et al., 2002; for review, see Szymanski, 2005). The putative WAVE/SCAR complex contains five subunits, one of which is the ARP2/3 activator SCAR. Plant SCARs contain conserved N-terminal and C-terminal domains that mediate interactions with other WAVE complex proteins and ARP2/3 activation, respectively (Frank et al., 2004; Basu et al., 2005). In nonplant systems, the regulatory relationships between WAVE and ARP2/3 appear to vary between cell types and species (for review, see Bompard and Caron, 2004; Stradal and Scita, 2006). However, in Arabidopsis, double mutant analyses indicate that WAVE is the sole pathway for ARP2/3 activation and that all subunits positively regulate ARP2/3 (Deeks et al., 2004; Basu et al., 2005; Djakovic et al., 2006). SCAR quadruple mutants are indistinguishable from arp2/3 null plants (Zhang et al., 2008). In moss, BRICK1 and ARP2/3 mutants have similar phenotypes, suggesting conserved regulatory relationships between WAVE and ARP2/3 in the plant kingdom (Harries et al., 2005; Perroud and Quatrano, 2006, 2008).Despite extensive molecular genetic knowledge about the ARP2/3 pathway and the strong actin cytoskeleton and growth phenotypes of arp2/3 plants, there are few direct data on the existence of the plant complex and its cellular function. There are reports of ARP2/3 localization based on the behavior of individual subunits (Le et al., 2003). In some cases, the results are weakened by the unknown specificity of heterologous ARP2/3 antibodies (Van Gestel et al., 2003; Fiserova et al., 2006). A specific antibody was raised against Silvetia ARP2 (Hable and Kropf, 2005). In developing zygotes, rhizhoid emergence is an early and actin-dependent developmental event, and at this stage a broad subcortical cone of ARP2 signal extends from the nuclear envelope toward the rhizhoid apex (Hable and Kropf, 2005). Double labeling experiments detected considerable overlap between ARP2 and actin, but surprisingly, there was a broad cortical domain of putative organelle-associated distal ARP2 that did not overlap with actin. In tip-growing P. patens chloronema cells, ARPC4 also appears to be membrane associated and localizes to a broad subcortical apical zone (Perroud and Quatrano, 2006). For these localization and genetic studies that rely on individual ARP2/3 subunits, it is important to prove that a plant ARP2/3 complex exists to test for an association of the complex with endomembrane compartments.In this paper, we provide several lines of evidence for an evolutionarily conserved pathway for ARP2/3 complex assembly in plant cells. These studies are based in part on genetic and biochemical analyses of the putative ARP2/3 subunit gene ARPC4. We found that disruption of the ARPC4 gene caused catastrophic disassembly of the complex and an array of phenotypes that were indistinguishable from known arp2/3 mutants. Chromatography experiments clearly revealed that functional hemagglutinin (HA)-tagged ARPC4 and endogenous ARP3 subunits assemble fully into ARP2/3 complexes. Surprisingly, much of the cellular pool of the plant ARP2/3 complex is membrane associated. An analysis of an extensive collection of wave and arp2/3 mutants allowed us to conclude that the normal association with membranes depended on the presence of ARP2 and the assembly status of the complex but not on the existence of an active pool of ARP2/3 in the cell.  相似文献   
6.
The WAVE complex is an essential regulator of actin-related protein (ARP) 2/3-dependent actin filament nucleation and cell shape change in migrating cells. Although the composition of the WAVE complex is well characterized, the cellular mechanisms that control its activity and localization are not well known. The 'distorted group' defines a set of Arabidopsis genes that are required to remodel the actin cytoskeleton and maintain the polarized elongation of branched, hair-like cells termed trichomes. Several loci within this group encode homologs of ARP2/3 subunits. In addition to trichome distortion, ARP2/3 subunit mutants have reduced shoot fresh weight and widespread defects in epidermal cell-cell adhesion. The precise cellular function of plant ARP2/3, and the means by which it is regulated, is not known. In this paper, we report that the 'distorted group' gene PIROGI encodes a homolog of the WAVE complex subunit SRA1. The similar cell shape and actin phenotypes of pir and ARP2/3 complex subunit mutants suggest that PIROGI positively regulates ARP2/3. PIROGI directly interacts with the small GTPase ATROP2 with isoform specificity and with selectivity for active forms of the protein. PIROGI shares only 30% amino acid identity with its human homolog. However, both WAVE subunit homologs are functionally interchangeable and display identical physical interactions with RHO family GTPases and the Arabidopsis homolog of the WAVE complex subunit NAP125. These results demonstrate the utility of the 'distorted group' mutants to study ARP2/3 complex functions from signaling input to cell shape output.  相似文献   
7.
The role of cryptochrome 2 in flowering in Arabidopsis   总被引:1,自引:0,他引:1       下载免费PDF全文
We have investigated the genetic interactions between cry2 and the various flowering pathways in relation to the regulation of flowering by photoperiod and vernalization. For this, we combined three alleles of CRY2, the wild-type CRY2-Landsberg erecta (Ler), a cry2 loss-of-function null allele, and the gain-of-function CRY2-Cape Verde Islands (Cvi), with mutants representing the various photoreceptors and flowering pathways. The analysis of CRY2 alleles combined with photoreceptor mutants showed that CRY2-Cvi could compensate the loss of phyA and cry1, also indicating that cry2 does not require functional phyA or cry1. The analysis of mutants of the photoperiod pathway showed epistasis of co and gi to the CRY2 alleles, indicating that cry2 needs the product of CO and GI genes to promote flowering. All double mutants of this pathway showed a photoperiod response very much reduced compared with Ler. In contrast, mutations in the autonomous pathway genes were additive to the CRY2 alleles, partially overcoming the effects of CRY2-Cvi and restoring day length responsiveness. The three CRY2 alleles were day length sensitive when combined with FRI-Sf2 and/or FLC-Sf2 genes, which could be reverted when the delay of flowering caused by FRI-Sf2 and FLC-Sf2 alleles was removed by vernalization. In addition, we looked at the expression of FLC and CRY2 genes and showed that CRY2 is negatively regulated by FLC. These results indicate an interaction between the photoperiod and the FLC-dependent pathways upstream to the common downstream targets of both pathways, SOC1 and FT.  相似文献   
8.
Golden hamsters were superinfected simultaneously with 100 Schistosoma haematobium cercariae, 1 and 3 weeks after initial infection with 100 S. mansoni cercariae. Results indicate that there was a higher degree of resistance to superinfection with S. haematobium at 1 week following initial infection with S. mansoni than that produced in the other two superinfections. This resistance was evidenced by a reduction in the number and size of worms of both species, decrease in S. haematobium egg extrusion per female and by a striking deviation in the egg distribution pattern of both species. Such an early host resistance was not recorded in previous works. Cross-mating was observed but no hybridization took place and the eggs produced were hatchable and typical of their species.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号