首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   37篇
  免费   2篇
  2015年   1篇
  2014年   2篇
  2013年   3篇
  2012年   4篇
  2011年   3篇
  2010年   1篇
  2007年   3篇
  2006年   6篇
  2005年   5篇
  2004年   2篇
  2002年   5篇
  2001年   1篇
  1999年   1篇
  1998年   1篇
  1984年   1篇
排序方式: 共有39条查询结果,搜索用时 15 毫秒
1.
Leukocyte adhesion to vascular endothelium is a key initiating step in the pathogenesis of many inflammatory diseases. In this study, we present real-time force measurements of the interaction between monocytic human promyelocytic leukemia cells (HL-60) cells and a monolayer of human umbilical vein endothelial cells (HUVECs) by using atomic force microscopy (AFM). The detachment of HL-60-HUVEC conjugates involved a series of rupture events with force transitions of 40-100 pN. The integrated force of these rupture events provided a quantitative measure of the adhesion strength on a whole cell level. The AFM measurements revealed that HL-60 adhesion is heightened in the borders formed by adjacent HUVECs. The average force and mechanical work required to detach a single HL-60 from the borders of a tumor necrosis factor-alpha-activated HUVEC layer were twice as high as those of the HUVEC bodies. HL-60 adhesion to the monolayer was significantly reduced by a monoclonal antibody against beta1-integrins and partially inhibited by antibodies against selectins ICAM-1 and VCAM-1 but was not affected by anti-alphaVbeta3. Interestingly, adhesion was also inhibited in a dose-dependent manner (IC50 approximately 100 nM) by a cyclic arginine-glycine-aspartic acid (cRGD) peptide. This effect was mediated via interfering with the VLA-4-VCAM-1 binding. In parallel measurements, transmigration of HL-60 cells across a confluent HUVEC monolayer was inhibited by the cRGD peptide and by both anti-beta1 and anti-alphaVbeta3 antibodies. In conclusion, these data demonstrate the role played by beta1-integrins in leukocyte-endothelial adhesion and transmigration and the role played by alphaVbeta3 in transmigration, thus underscoring the high efficacy of cRGD peptide in blocking both the adhesion and transmigration of monocytes.  相似文献   
2.
The use of granulocyte colony stimulating factor (G-CSF) for recovery from neutropenia has been established; however, acute lung injury due to G-CSF-induced polymorphonuclear leukocyte (PMN) activation is a serious complication. This study was designed to compare the activation of PMN with single bolus administration and continuous administration of G-CSF. Healthy volunteers (age 33.8 +/- 1.4 yr; n = 6) received a single bolus injection of 50 microm/m2 of G-CSF (SI; n = 6) or continuous subcutaneous injection of 50 microm/m2 of G-CSF for 24 h (CI; n = 6) and were followed for 48 h. Circulating leukocyte counts, markers of activation on PMN, and circulating levels of G-CSF, IL-6, and PMN elastase were measured. SI rapidly increased serum G-CSF levels, which peaked at 4 h, whereas CI gradually increased G-CSF levels, which remained at a steady level from 8 to 24 h. SI caused a rapid decrease in PMN counts at 0.5 h followed by sustained increase to peak at 12 h. CI gradually increased PMN counts, which peaked at 24 h, but the peak values were not significantly different between the groups. SI-induced activation of PMN, which was characterized by increased expression of CD11b, decreased expression of L-selectin, and increased F-actin content, led to increases in serum IL-6 and PMN elastase level. Such changes were all attenuated with CI (P < 0.05). We conclude that continuous subcutaneous injection of G-CSF resulted in a marrow response similar to that to a single injection but yielded reduced PMN activation.  相似文献   
3.
Glomerular epithelial cells (GEC) are aknown site of vascular endothelial growth factor (VEGF) production. Weestablished immortalized rat GEC, which retained the ability to produceVEGF. The isoforms expressed by GEC were defined as VEGF-205, -188, -120, and -164. The electrical resistance of endothelial cells culturedon GEC-conditioned matrix, an indicator of the permeability ofmonolayers to solutes, was significantly increased by the treatment with the neutralizing polyclonal antibodies to VEGF and decreased byVEGF-165. Transfection of endothelial cells with green fluorescence protein-caveolin construct and intravital confocal microscopy showedthat VEGF results in a rapid appearance of transcellular elongatedstructures decorated with caveolin. Transmission electron microscopy ofendothelial cells showed that caveolae undergo rapid internalizationand fusion 30 min after application of VEGF-165. Later (36 h),endothelial cells pretreated with VEGF developed fenestrae and showed adecrease in electrical resistance. Immunoelectron microscopy ofglomeruli confirmed VEGF localization to podocytes and in the basementmembrane. In summary, immortalized GEC retain the ability to synthesizeVEGF. Matrix-deposited and soluble VEGF leads to the enhancement ofcaveolae expression, their fission and fusion, formation of elongatedcaveolin-decorated structures, and eventual formation of fenestrae,both responsible for the increase in endothelial permeability.

  相似文献   
4.
Long-term administration of angiotensin II causes myocardial loss and cardiac fibrosis. We previously found iron deposition in the heart of the angiotensin II-infused rat, which may promote angiotensin II-induced cardiac damage. In the present study, we have investigated whether an iron chelator (deferoxamine) and a free radical scavenger (T-0970) affect the angiotensin II-induced upregulation of transforming growth factor-beta1 (TGF-beta1). Angiotensin II infusion for 7 days caused a robust increase in TGF-beta1 mRNA expression in vascular smooth muscle cells, myofibroblast-like cells, and migrated monocytes/macrophages. T-0970 and deferoxamine suppressed the upregulation of TGF-beta1 mRNA and reduced the extent of cardiac fibrosis in the heart of rats treated with angiotensin II. These agents blocked the angiotensin II-induced upregulation of heme oxygenase-1, a potent oxidative and cellular stress-responsive gene, but they did not significantly affect systolic blood pressure or plasma levels of aldosterone. In addition, T-0970 and deferoxamine suppressed the angiotensin II-induced upregulation of monocyte chemoattractant protein-1 in the heart. These results collectively suggest that iron and the iron-mediated generation of reactive oxygen species may contribute to angiotensin II-induced upregulation of profibrotic and proinflammatory genes, such as TGF-beta1 and monocyte chemoattractant protein-1.  相似文献   
5.
Recently, two novel mammalian aquaporins (AQPs), AQPs 11 and 12, have been identified and classified as members of a new AQP subfamily, the "subcellular AQPs". In members of this subfamily one of the two asparagine-proline-alanine (NPA) motifs, which play a crucial role in selective water conduction, are not completely conserved. Mouse AQP11 (mAQP11) was expressed in Sf9 cells and purified using the detergent Fos-choline 10. The protein was reconstituted into liposomes, which were used for water conduction studies with a stopped-flow device. Single water permeability (pf) of AQP11 was measured to be 1.72+/-0.03x10(-13) cm(3)/s, suggesting that other members of the subfamily with incompletely conserved NPA motifs may also function as water channels.  相似文献   
6.
Maggot debridement therapy (MDT) is effective for treating intractable wounds, but its precise molecular mechanism, including the association between MDT and growth factors, remains unknown. We administered MDT to nine patients (66.3 ± 11.8 yr, 5 male and 4 female) with intractable wounds of lower extremities because they did not respond to conventional therapies. Significant increases of hepatocyte growth factor (HGF) levels were observed in femoral vein blood during 48 h of MDT (P < 0.05), but no significant change was found for vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), transforming growth factor-β1 (TGF-β1), or tumor necrosis factor-α (TNF-α). We conducted NIH-3T3 cell stimulation assay to evaluate the relation between HGF and protease activity in excretion/secretion (ES) derived from maggots. Compared with the control group, HGF was significantly higher in the 0.05 μg/ml ES group (P < 0.01). Furthermore, protease inhibitors suppressed the increase of HGF (P < 0.05). The HGF expression was increased in proportion to the ES protein concentration of 0.025 to 0.5 μg/ml. In fact, ES showed stronger capability of promoting HGF production and less cytotoxicity than chymotrypsin or bromelain. HGF is an important factor involved in cutaneous wound healing. Therefore, these results suggest that formation of healthy granulation tissue observed during MDT results from the increased HGF. Further investigation to identify molecules enhancing HGF expression by MDT will contribute greatly to drug target discovery for intractable wound healing therapy.  相似文献   
7.
In 2001, with‐no‐lysine (WNK) kinases were identified as the genes responsible for the human hereditary hypertensive disease pseudohypoaldosteronism type II (PHAII). It took a further 6 years to clarify that WNK kinases participate in a signaling cascade with oxidative stress‐responsive gene 1 (OSR1), Ste20‐related proline‐alanine‐rich kinase (SPAK), and thiazide‐sensitive NaCl cotransporter (NCC) in the kidney and the constitutive activation of this signaling cascade is the molecular basis of PHAII. Since this discovery, the WNK–OSR1/SPAK–NCC signaling cascade has been shown to be involved not only in PHAII but also in the regulation of blood pressure under normal and pathogenic conditions, such as hyperinsulinemia. However, the molecular mechanisms of WNK kinase regulation by dietary and hormonal factors and by PHAII‐causing mutations remain poorly understood. In 2012, two additional genes responsible for PHAII, Kelch‐like 3 (KLHL3) and Cullin3, were identified. At the time of their discovery, the molecular mechanisms underlying the interaction between these genes and their involvement in PHAII were unknown. Here we review the pathophysiological roles of the WNK signaling cascade clarified to date and introduce a new mechanism of WNK kinase regulation by KLHL3 and Cullin3, which provides insight on previously unknown mechanisms of WNK kinase regulation.  相似文献   
8.
ClC chloride channels (ClCs) can be classified into two groups in terms of their cellular localizations: ClCs present in the plasma membranes and those residing in intracellular organelles. Members of the latter group, including ClC-3, ClC-4, ClC-5, ClC-6, and ClC-7, are often co-expressed in a variety of cell types in many organs. Although the localization of individual channels within cells has been investigated, the degree of overlap between the locations of different ClCs in the same cell has not been clarified. To address this question, different combinations of ClCs, engineered to encode specific epitope tags (FLAG or HA), were either transiently or stably transfected into HEK293 cells, and we then compared the intracellular localization of the expressed channel proteins by immunofluorescence microscopy. Immunofluorescence images of the alternatively labeled channels clearly showed significant co-localization between all pair-wise combinations of ClCs. In particular, ClC-3, ClC-4, and ClC-5 showed a high degree of co-localization. As a significant degree of co-localization between ClCs was observed, we used co-immunoprecipitation to evaluate oligomer formation, and found that each ClC tested could form homo-oligomers, and that any pair-wise combination of ClC-3, ClC-4, and ClC-5 could also form hetero-oligomers. Neither ClC-6 nor ClC-7 was co-precipitated with any other channel protein. These results suggest that within cells ClC-3, ClC-4, and ClC-5 may have combinatorial functions, whereas ClC-6 and ClC-7 are more likely to function as homo-oligomers.  相似文献   
9.
The aquaporin7 (AQP7) water channel is known to be a member of the aquaglyceroporins, which allow the rapid transport of glycerol and water. AQP7 is abundantly present at the apical membrane of the proximal straight tubules in the kidney. In this paper, we review the physiological functions of AQP7 in the kidney. To investigate this, we generated AQP7 knockout mice. The water permeability of the proximal straight tubule brush border membrane measured by the stopped flow method was reduced in AQP7 knockout mice compared to wild-type mice (AQP7, 18.0 ± 0.4 × 10−3 cm/s vs. wild-type, 20.0 ± 0.3 × 10−3 cm/s). Although AQP7 solo knockout mice did not show a urinary concentrating defect, AQP1/AQP7 double knockout mice showed reduced urinary concentrating ability compared to AQP1 solo knockout mice, indicating that the contribution of AQP7 to water reabsorption in the proximal straight tubules is physiologically substantial. On the other hand, AQP7 knockout mice showed marked glycerol in their urine (AQP7, 1.7 ± 0.34 mg/ml vs. wild-type, 0.005 ± 0.002 mg/ml). This finding identified a novel pathway of glycerol reabsorption that occurs in the proximal straight tubules. In two mouse models of proximal straight tubule injury, the cisplatin-induced acute renal failure (ARF) model and the ischemic-reperfusion ARF model, an increase of urine glycerol was observed (pre-treatment, 0.007 ± 0.005 mg/ml; cisplatin, 0.063 ± 0.043 mg/ml; ischemia, 0.076 ± 0.02 mg/ml), suggesting that urine glycerol could be used as a new biomarker for detecting proximal straight tubule injury.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号