首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39篇
  免费   4篇
  2022年   2篇
  2021年   1篇
  2017年   1篇
  2016年   2篇
  2015年   2篇
  2013年   1篇
  2012年   4篇
  2011年   2篇
  2010年   2篇
  2009年   1篇
  2008年   4篇
  2007年   1篇
  2006年   4篇
  2005年   1篇
  2004年   6篇
  2003年   3篇
  2002年   4篇
  1998年   1篇
  1974年   1篇
排序方式: 共有43条查询结果,搜索用时 15 毫秒
1.
DNA double strand break (DSB) causes many cytotoxic effects such as cellular lethality, somatic mutation, and carcinogenesis. Fidelity of DSB repair is a important factor that determines the quality of genomic stability. It is known that the most of DSBs are properly repaired on the earth, however, little is known whether those are rejoined at the same fidelity even under the space environment. One of the DSB repair pathway, homologous recombination (HR), allows the cells to repair their DSBs with error free. Therefore, the efficiency of HR is a good index to assess the fidelity of DSB repair. In order to clarify the effect of gravity stress on HR pathway, we established a cell line that can detect a site-specific DNA repair via HR. The cells carrying a reporter construct for HR were incubated under hypergravity condition after induction of site specific DSB. Our preliminary results suggest that the gravity stress may affect the HR efficiency.  相似文献   
2.
Various types of stress, such as disruption of calcium homeostasis, inhibition of protein glycosylation and reduction of disulfide bonds, result in accumulation of misfolded proteins in the endoplasmic reticulum (ER). The initial cellular response involves removal of such proteins by the ER, but excessive and/or long-term stress results in apoptosis. In this study, we used a randomized ribozyme library and ER stress-mediated apoptosis (tunicamycin-induced apoptosis) in SK-N-SH human neuroblastoma cells as a selective phenotype to identify factors involved in this process. We identified a double-stranded RNA-dependent protein kinase (PKR) as one of the participants in this process. The level of nuclear PKR was elevated, but the level of cytoplasmic PKR barely changed in tunicamycin-treated SK-N-SH cells. Furthermore, tunicamycin also raised levels of phosphorylated PKR in the nucleus. We also detected the accumulation of phosphorylated PKR in the nuclei of autopsied brain tissues in Alzheimer's disease. Thus, PKR might play a role in ER stress-induced apoptosis and in Alzheimer's disease.  相似文献   
3.
Suyama E  Kawasaki H  Taira K 《FEBS letters》2002,528(1-3):63-69
By using our recently developed gene discovery system, we have identified Bak, a member of the Bcl-2 family, as a pro-apoptotic factor in the tumor necrosis factor (TNF)-alpha-induced apoptotic pathway in caspase 3-deficient cells. Unlike Bcl-2, Bak stimulates several apoptotic pathways, however the molecular mechanism(s) of its action remains unclear. For example, it is unclear whether Bak induces apoptosis in caspase 3-deficient cells. In this study, we examined the effects of overexpression of Bak in MCF-7 cells that lack caspase 3. We found that despite the absence of caspase 3 in MCF-7 cells, they were more sensitive to the cell death effects of Bak as compared to caspase 3-expressing HeLa S3 cells. The targeting of Bak function by ribozymes suggests that Bak is required for the TNF-alpha-induced apoptotic pathway in caspase 3-deficient cells. This study demonstrates the caspase 3-independent function of Bak in the TNF-alpha-induced apoptotic pathway.  相似文献   
4.
Now that the sequences of many genomes are available, methods are required for the rapid identification of functional genes. We describe here a simple system for the isolation of genes that function in the tumor necrosis factor-alpha (TNF-alpha)-mediated pathway of apoptosis, using RNA helicase-associated ribozyme libraries with randomized substrate-binding arms. Because target-site accessibility considerably limits the effective use of intracellular ribozymes, the effectiveness of a conventional ribozyme library has been low. To overcome this obstacle, we attached to ribozymes an RNA motif (poly(A)-tail) able to interact with endogenous RNA helicase(s) so that the resulting helicase-attached, hybrid ribozymes can more easily attack target sites regardless of their secondary or tertiary structures. When the phenotype of cells changes upon introduction of a ribozyme library, genes responsible for these changes may be identified by sequencing the active ribozyme clones. In the case of TNF-alpha-mediated apoptosis, when a ribozyme library was introduced into MCF-7 cells, surviving clones were completely or partially resistant to TNF-alpha-induced apoptosis. We identified many pro-apoptotic genes and partial sequences of previously uncharacterized genes using this method. Our gene discovery system should be generally applicable to the identification of functional genes in various systems.  相似文献   
5.
6.
7.
8.
Background: Local recurrence, the most frequent pattern of recurrence of rectal carcinoma, is almost always fatal. The difficulty of diagnosing local recurrence contributes importantly to the poor prognosis. Methods: We coupled monoclonal antibody (Mab) A7, which reacts specifically with human colorectal carcinoma, to ferromagnetic lignosite (FML) particles to distinguish rectal carcinoma from other tissues by magnetic resonance (MR) imaging. We examined retention of immunoreactivity by the A7-FML complexes in vitro, and also their distribution in vivo according to radiolabeling and MR imaging when injected into nude mice bearing human colorectal carcinoma xenografts. Results: A7-FML retained binding activity nearly identical to that of Mab A7. Significantly more 125I-labeled A7-FML accumulated in engrafted tumors than did 125I-labeled normal mouse IgG-FML complexes (P<0.05). A7-FML disappeared rapidly from the blood. Normal tissues accumulated less 125I-labeled A7-FML than tumors; this accumulation decreased linearly with time. In MR imaging, signal intensity was reduced in the tumor by the injection of A7-FML. Conclusions: A7-FML is potentially useful as a MR contrast enhancing agent for human colorectal carcinoma xenografts implanted subcutaneously.  相似文献   
9.
10.
Hepatic stellate cells (HSCs) respond to injury with a coordinated set of events (termed activation), which includes migration and upregulation of matrix protein production. Cell migration requires an intact actin cytoskeleton that is linked to the plasma membrane by ezrin-radixin-moesin (ERM) proteins. We have previously found that the linker protein in HSCs is exclusively moesin. Here, we describe HSC migration and fibrogenesis in moesin-deficient mice. We developed an acute liver injury model that involved focal thermal denaturation and common bile duct ligation. HSC migration and collagen deposition were assessed by immunohistology and quantitative real-time PCR. Activated HSCs were isolated from wild-type or moesin-deficient mice for direct examination of migration. Activated HSCs from wild-type mice were positive for moesin. Migration of moesin-deficient HSCs was significantly reduced. In a culture assay, 22.1% of normal HSCs migrated across a filter in 36h. In contrast, only 1.3% of activated moesin-deficient HSCs migrated. Collagen deposition around the injury area similarly was reduced in moesin-deficient liver. The linker protein moesin is essential for HSC activation and migration in response to injury. Fibrogenesis is coupled to migration and reduced in moesin-deficient mice. Agents that target moesin may be beneficial for chronic progressive fibrosis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号