首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   52篇
  免费   5篇
  国内免费   1篇
  2019年   1篇
  2017年   1篇
  2016年   1篇
  2015年   4篇
  2013年   4篇
  2012年   1篇
  2011年   1篇
  2010年   3篇
  2009年   3篇
  2008年   6篇
  2007年   2篇
  2006年   2篇
  2005年   2篇
  2004年   6篇
  2003年   4篇
  2002年   2篇
  2001年   2篇
  2000年   2篇
  1999年   1篇
  1998年   2篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   2篇
  1985年   1篇
  1981年   1篇
  1968年   1篇
排序方式: 共有58条查询结果,搜索用时 15 毫秒
1.
WhileEscherichia coli is common as a commensal organism in the distal ileum and colon, the presence of colonization factors (CF) on pathogenic strains ofE. coli facilitates attachment of the organism to intestinal receptor molecules in a species- and tissue-specific fashion. After the initial adherence, colonization occurs, and the involvement of additional virulence determinants leads to illness. EnterotoxigenicE. coli (ETEC) is the most extensively studied of the five categories ofE. coli that cause diarrheal disease, and has the greatest impact on health worldwide. ETEC can be isolated from domestic animals and humans. The biochemistry, genetics, epidemiology, antigenic characteristics, and cell and receptor binding properties of ETEC have been extensively described. Another major category, enteropathogenicE. coli (EPEC), has virulence mechanisms, primarily effacement and cytoskeletal rearrangement of intestinal brush borders, that are distinct from ETEC. An EPEC CF receptor has been purified and characterized as a sialidated transmembrane glycoprotein complex directly attached to actin, thereby associating CF-binding with host-cell response. Three, additional categories ofE. coli diarrheal disease, their colonization factors and their host cell receptors are discussed. It appears that biofilms exist in the intestine in a manner similar to oral bacterial biofilms, and thatE. coli is part of these biofilms as both commensals and pathogens.Abbreviations CF colonization factor - CFA Colonization Factor Antigen - CS coli-surface-associated antigen - EAggEC enteroaggregativeE. coli - ECDD E. coli diarrheal disease - EHEC enterohemorrhagicE. coli - EIEC enteroinvasiveE. coli - EPEC enteropathogenicE. coli - ETEC enterotoxigenicE. coli - Gal galactose - GalNAc N-acetyl galactosamine - LT heat-labile toxin - NeuAc N-acetyl neuraminic acid - PCF Putative colonization factor - RBC red blood cells - SLT Shiga-like toxin - ST heat-stable toxin  相似文献   
2.
We examined gazelle peripheral blood leucocytes using the α-Naphthyl acetate esterase (ANAE) staining technique (pH 5.8). Our purpose was to determine the percentage of ANAE positive lymphocytes. The proportion of ANAE positive T-lymphocytes was 72%. T-lymphocytes showed an ANAE positive reaction, but eosinophilic granulocytes and monocytes also showed a positive reaction. By contrast, no reaction was detected in B-lymphocytes, neutrophil granulocytes or platelets. The reaction observed in T-lymphocytes was a red-brown coloration, usually 1–2 granules, but enough granules to fill the cytoplasm were detected rarely. As a result of ANAE enzyme staining, we concluded that the staining technique can be used as a cytochemical marker for gazelle T-lymphocytes.  相似文献   
3.
4.
Understanding the structural origins of differences in reduction potentials is crucial to understanding how various electron transfer proteins modulate their reduction potentials and how they evolve for diverse functional roles. Here, the high-resolution structures of several Clostridium pasteurianum rubredoxin (Cp Rd) variants with changes in the vicinity of the redox site are reported in order to increase this understanding. Our crystal structures of [V44L] (at 1.8 A resolution), [V44A] (1.6 A), [V44G] (2.0 A) and [V44A, G45P] (1.5 A) Rd (all in their oxidized states) show that there is a gradual decrease in the distance between Fe and the amide nitrogen of residue 44 upon reduction in the size of the side chain of residue 44; the decrease occurs from leucine to valine, alanine or glycine and is accompanied by a gradual increase in their reduction potentials. Mutation of Cp Rd at position 44 also changes the hydrogen-bond distance between the amide nitrogen of residue 44 and the sulfur of cysteine 42 in a size-dependent manner. Our results suggest that residue 44 is an important determinant of Rd reduction potential in a manner dictated by side-chain size. Along with the electric dipole moment of the 43-44 peptide bond and the 44-42 NH--S type hydrogen bond, a modulation mechanism for solvent accessibility through residue 41 might regulate the redox reaction of the Rds.  相似文献   
5.
Rubredoxin is a small iron-sulfur (FeS4) protein involved in oxidation–reduction reactions. The side chain of Leu41 near the iron-sulfur center has two conformations, which we suggested previously serve as a gate for a water molecule during the electron transfer process. To establish the role of residue 41 in electron transfer, an [L41A] mutant of Clostridium pasteurianum rubredoxin was constructed and crystallized in both oxidation states. Despite the lack of the gating side chain in this protein, the structure of the reduced [L41A] rubredoxin reveals a specific water molecule in the same position as observed in the reduced wild-type rubredoxin. In contrast, both the wild-type and [L41A] rubredoxins in the oxidized state do not have water molecules in this location. The reduction potential of the [L41A] variant was ~50 mV more positive than wild-type. Based on these observations, it is proposed that the site around the S of Cys9 serves as a port for an electron acceptor. Lastly, the Fe–S distances of the reduced rubredoxin are expanded, while the hydrogen bonds between S of the cysteines and the backbone amide nitrogens are shortened compared to its oxidized counterpart. This small structural perturbation in the Fe(II)/Fe(III) transition is closely related to the small energy difference which is important in an effective electron transfer agent.  相似文献   
6.
The extent and strength of the hydrogen bond networks in rubredoxins from the hyperthermophile Pyrococcus furiosus (PfRd), and its mesophilic analogue Clostridium pasteurianum (CpRd), are examined and compared using NMR spectroscopy. NMR parameters examined in this study include through-hydrogen bond (h3)J(NC)(') scalar couplings and (1)H, (13)C, and (15)N chemical shifts, as well as covalent (1)J(NH) and (1)J(NC)(') scalar couplings. These parameters have allowed the characterization in solution of 12 hydrogen bonds in each protein. Despite a 83% sequence homology and a low RMSD for the backbone heavy atoms (0.648 A) in the crystalline state, subtle, but definite, changes have been identified in the detailed hydrogen-bonding patterns. CpRd shows an increased number of hydrogen bonds in the triple-stranded beta-sheet and an additional hydrogen bond in the multiple-turn segment including residues 14-32. On the other hand, PfRd exhibits an overall strengthening of N-H...O=C hydrogen bonds in the loops involved at the metal binding site as well as evidence for an additional NH...S(Cys) hydrogen bond involving the alanine residue 44. These data, as well as temperature dependence of the NMR parameters, suggest that the particular NMR hydrogen bond pattern found in the hyperthermophile rubredoxin leads to an increased stabilization at the metal binding pocket. It seems to result from a subtle redistribution of hydrogen-bonding interactions between the triple-stranded beta-sheet and the actual metal binding site.  相似文献   
7.
Biological electron transfer is an efficient process even though the distances between the redox moieties are often quite large. It is therefore of great interest to gain an understanding of the physical basis of the rates and driving forces of these reactions. The structural relaxation of the protein that occurs upon change in redox state gives rise to the reorganizational energy, which is important in the rates and the driving forces of the proteins involved. To determine the structural relaxation in a redox protein, we have developed methods to hold a redox protein in its final oxidation state during crystallization while maintaining the same pH and salt conditions of the crystallization of the protein in its initial oxidation state. Based on 1.5 A resolution crystal structures and molecular dynamics simulations of oxidized and reduced rubredoxins (Rd) from Clostridium pasteurianum (Cp), the structural rearrangements upon reduction suggest specific mechanisms by which electron transfer reactions of rubredoxin should be facilitated. First, expansion of the [Fe-S] cluster and concomitant contraction of the NH...S hydrogen bonds lead to greater electrostatic stabilization of the extra negative charge. Second, a gating mechanism caused by the conformational change of Leucine 41, a nonpolar side chain, allows transient penetration of water molecules, which greatly increases the polarity of the redox site environment and also provides a source of protons. Our method of producing crystals of Cp Rd from a reducing solution leads to a distribution of water molecules not observed in the crystal structure of the reduced Rd from Pyrococcus furiosus. How general this correlation is among redox proteins must be determined in future work. The combination of our high-resolution crystal structures and molecular dynamics simulations provides a molecular picture of the structural rearrangement that occurs upon reduction in Cp rubredoxin.  相似文献   
8.
The high-resolution crystal structure of the small iron-sulfur protein rubredoxin (Rd) from the hyperthermophilic archeon Pyrococcus furiosus (Pf) is reported in this paper, together with those of its methionine ([_0M]Pf Rd) and formylmethionine (f[_0M]Pf Rd) variants. These studies were conducted to assess the consequences of the presence or absence of a salt bridge between the amino terminal nitrogen of Ala1 and the side chain of Glu14 to the structure and stability of this rubredoxin. The structure of wild-type Pf Rd was solved to a resolution of 0.95?Å and refined by full-matrix least-squares techniques to a crystallographic agreement factor of 12.8% [F>2σ(F) data, 25?617 reflections], while those of the [_0M]Pf and f[_0M]Pf Rd variants were solved at slightly lower resolutions (1.1?Å, R=11.5%, 17?213 reflections; 1.2?Å, R=13.7%, 12?478 reflections, respectively). The quality of the data was such that about half of the hydrogen atoms of the protein were clearly visible. All three structures were ultimately refined using the program SHELXL-93 with anisotropic atomic displacement parameters for all non-hydrogen protein atoms, and calculated hydrogen positions included but not refined. In this paper we also report thermostability data for all three forms of Pf Rd, and show that they follow the sequence wild-type >[_0M]Pf>formyl[_0M]Pf. Comparison of the three Pf Rd structures in the N-terminal region show that the structures of wild-type Pf Rd and f[_0M]Pf are rather similar, while that of [_0M]Pf Rd shows a number of additional hydrogen bonds involving the extra methionine group. While the salt bridge between the Ala1 amino group and the Glu14 carboxylate is not the primary determinant of the thermostability of Pf Rd, alterations to the amino terminus do have a moderate influence on the thermostability of this protein.  相似文献   
9.
The solution structure of reduced Clostridium pasteurianum rubredoxin (MW 6100) is reported here. The protein is highly paramagnetic, with iron(II) being in the S=2 spin state. The Hβ protons of the ligating cysteines are barely observed, and not specifically assigned. Seventy-six percent of the protons have been assigned and 1267 NOESY peaks (of which 1037 are meaningful) have been observed. Nonselective T 1 measurements have been measured by recording four nonselective 180°-τ-NOESY at different τ values, and fitting the intensity recoveries to an exponential recovery. Thirty-six metal-proton upper and lower distance constraints have been obtained from the above measurements. The use of such constraints is assessed with respect to spin delocalization on the sulfur donor atoms. The solution structure obtained with the program DYANA has been refined through restrained energy minimization. A final family of 20 conformers is obtained with no distance violations larger than 0.24?Å, and RMSD values to the mean structure of 0.58 and 1.03?Å for backbone and all heavy atoms, respectively (measured on residues 3–53). The structure is compared to the X-ray structure of the oxidized and of the zinc substituted protein, and to the available structures of other rubredoxins. In particular, the comparison with the crystal structure and the solution structure of the Zn derivative of the highly thermostable Pyrococcus furiosus rubredoxin suggested that the relatively low thermal stability of the clostridial rubredoxin may be tentatively ascribed to the loosening of its secondary structure elements. This research is a further achievement at the frontier of solution structure determinations of paramagnetic proteins.  相似文献   
10.
Mutations in the PTEN‐induced kinase 1 (PINK1) are causative of autosomal recessive Parkinson''s disease (PD). We have previously reported that PINK1 is activated by mitochondrial depolarisation and phosphorylates serine 65 (Ser65) of the ubiquitin ligase Parkin and ubiquitin to stimulate Parkin E3 ligase activity. Here, we have employed quantitative phosphoproteomics to search for novel PINK1‐dependent phosphorylation targets in HEK (human embryonic kidney) 293 cells stimulated by mitochondrial depolarisation. This led to the identification of 14,213 phosphosites from 4,499 gene products. Whilst most phosphosites were unaffected, we strikingly observed three members of a sub‐family of Rab GTPases namely Rab8A, 8B and 13 that are all phosphorylated at the highly conserved residue of serine 111 (Ser111) in response to PINK1 activation. Using phospho‐specific antibodies raised against Ser111 of each of the Rabs, we demonstrate that Rab Ser111 phosphorylation occurs specifically in response to PINK1 activation and is abolished in HeLa PINK1 knockout cells and mutant PINK1 PD patient‐derived fibroblasts stimulated by mitochondrial depolarisation. We provide evidence that Rab8A GTPase Ser111 phosphorylation is not directly regulated by PINK1 in vitro and demonstrate in cells the time course of Ser111 phosphorylation of Rab8A, 8B and 13 is markedly delayed compared to phosphorylation of Parkin at Ser65. We further show mechanistically that phosphorylation at Ser111 significantly impairs Rab8A activation by its cognate guanine nucleotide exchange factor (GEF), Rabin8 (by using the Ser111Glu phosphorylation mimic). These findings provide the first evidence that PINK1 is able to regulate the phosphorylation of Rab GTPases and indicate that monitoring phosphorylation of Rab8A/8B/13 at Ser111 may represent novel biomarkers of PINK1 activity in vivo. Our findings also suggest that disruption of Rab GTPase‐mediated signalling may represent a major mechanism in the neurodegenerative cascade of Parkinson''s disease.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号