首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
  2007年   2篇
  2005年   1篇
  2003年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
SPOC1 cells, which are a mucin-secreting model of rat airway goblet cells, possess a luminal P2Y2 purinoceptor through which UTP, ATP, and ATPgammaS stimulate secretion with EC50 values of approximately 3 microM. PMA elicits mucin secretion with high EC50 (75 nM) and saturation (300 nM) values. For the first time in airway mucin-secreting cells, the PKC isoforms expressed and activated by a secretagogue were determined using RT-PCR/restriction-enzyme mapping and Western blotting. Five isoforms were expressed: cPKCalpha, nPKCdelta and -eta, and aPKCzeta and -iota/lambda. PMA caused cPKCalpha and nPKCdelta to translocate to the membrane fraction of SPOC1 cells; only nPKCdelta so responded to ATPgammaS. Membrane-associated nPKCdelta and mucin secretion increased in parallel with ATPgammaS concentration and yielded EC50 values of 2-3 microM and maximum values of 100 microM. Effects of PMA to increase membrane-associated cPKCalpha and nPKCdelta saturated at 30 nM, whereas mucin secretion saturated at 300 nM, which suggests a significant PKC-independent effect of PMA on mucin secretion. A prime alternate phorbol ester-receptor candidate is the C1-domain protein MUNC13. RT-PCR revealed the expression of ubiquitous (ub)MUNC13-2 and its binding partner, DOC2-gamma. Hence, P2Y2 agonists activate nPKCdelta in SPOC1 cells. PMA activates cPKCalpha and nPKCdelta at high affinity and stimulates a lower affinity PKC-independent pathway that leads to mucin secretion.  相似文献   
2.
Airway goblet cell mucin secretion is controlled by agonist activation of P2Y2 purinoceptors, acting through Gq/PLC, inositol-1,4,5-trisphosphate (IP3), diacylglycerol, Ca2+ and protein kinase C (PKC). Previously, we showed that SPOC1 cells express cPKC, nPKC, nPKC, and nPKC; of these, only nPKC translocated to the membrane in correlation with mucin secretion (Abdullah LH, Bundy JT, Ehre C, Davis CW. Am J Physiol Lung Physiol 285: L149–L160, 2003). We have verified these results and pursued the identity of the PKC effector isoform by testing the effects of altered PKC expression on regulated mucin release using SPOC1 cell and mouse models. SPOC1 cells overexpressing cPKC, nPKC, and nPKC had the same levels of ATPS- and phorbol-1,2-myristate-13-acetate (PMA)-stimulated mucin secretion as the levels in empty retroviral vector expressing cells. Secretagogue-induced mucin secretion was elevated only in cells overexpressing nPKC (14.6 and 23.5%, for ATPS and PMA). Similarly, only SPOC1 cells infected with a kinase-deficient nPKC exhibited the expected diminution of stimulated mucin secretion, relative to wild-type (WT) isoform overexpression. ATPS-stimulated mucin secretion from isolated, perfused mouse tracheas was diminished in P2Y2-R null mice by 82% relative to WT mice, demonstrating the utility of mouse models in studies of regulated mucin secretion. Littermate WT and nPKC knockout (KO) mice had nearly identical levels of stimulated mucin secretion, whereas mucin release was nearly abolished in nPKC KO mice relative to its WT littermates. We conclude that nPKC is the effector isoform downstream of P2Y2-R activation in the goblet cell secretory response. The translocation of nPKC observed in activated cells is likely not related to mucin secretion but to some other aspect of goblet cell biology. protein kinase C; mucins; goblet cells; exocytosis; airways; epithelium; lung  相似文献   
3.
Airway goblet cell mucin secretion is controlled by agonist activation of P2Y(2) purinoceptors, acting through Gq/PLC, inositol-1,4,5-trisphosphate (IP(3)), diacylglycerol, Ca(2+) and protein kinase C (PKC). Previously, we showed that SPOC1 cells express cPKCalpha, nPKCdelta, nPKCepsilon, and nPKCeta; of these, only nPKCdelta translocated to the membrane in correlation with mucin secretion (Abdullah LH, Bundy JT, Ehre C, Davis CW. Am J Physiol Lung Physiol 285: L149-L160, 2003). We have verified these results and pursued the identity of the PKC effector isoform by testing the effects of altered PKC expression on regulated mucin release using SPOC1 cell and mouse models. SPOC1 cells overexpressing cPKCalpha, nPKCdelta, and nPKCeta had the same levels of ATPgammaS- and phorbol-1,2-myristate-13-acetate (PMA)-stimulated mucin secretion as the levels in empty retroviral vector expressing cells. Secretagogue-induced mucin secretion was elevated only in cells overexpressing nPKCepsilon (14.6 and 23.5%, for ATPgammaS and PMA). Similarly, only SPOC1 cells infected with a kinase-deficient nPKCepsilon exhibited the expected diminution of stimulated mucin secretion, relative to wild-type (WT) isoform overexpression. ATPgammaS-stimulated mucin secretion from isolated, perfused mouse tracheas was diminished in P2Y(2)-R null mice by 82% relative to WT mice, demonstrating the utility of mouse models in studies of regulated mucin secretion. Littermate WT and nPKCdelta knockout (KO) mice had nearly identical levels of stimulated mucin secretion, whereas mucin release was nearly abolished in nPKCepsilon KO mice relative to its WT littermates. We conclude that nPKCepsilon is the effector isoform downstream of P2Y(2)-R activation in the goblet cell secretory response. The translocation of nPKCdelta observed in activated cells is likely not related to mucin secretion but to some other aspect of goblet cell biology.  相似文献   
4.
Airway goblet cells secrete mucin onto mucosal surfaces under the regulation of an apical, phospholipase C/Gq-coupled P2Y2 receptor. We tested whether cortical actin filaments negatively regulate exocytosis in goblet cells by forming a barrier between secretory granules and plasma membrane docking sites as postulated for other secretory cells. Immunostaining of human lung tissues and SPOC1 cells (an epithelial, mucin-secreting cell line) revealed an apical distribution of - and -actin in ciliated and goblet cells. In goblet cells, actin appeared as a prominent subplasmalemmal sheet lying between granules and the apical membrane, and it disappeared from SPOC1 cells activated by purinergic agonist. Disruption of actin filaments with latrunculin A stimulated SPOC1 cell mucin secretion under basal and agonist-activated conditions, whereas stabilization with jasplakinolide or overexpression of - or -actin conjugated to yellow fluorescent protein (YFP) inhibited secretion. Myristoylated alanine-rich C kinase substrate, a PKC-activated actin-plasma membrane tethering protein, was phosphorylated after agonist stimulation, suggesting a translocation to the cytosol. Scinderin (or adseverin), a Ca2+-activated actin filament severing and capping protein was cloned from human airway and SPOC1 cells, and synthetic peptides corresponding to its actin-binding domains inhibited mucin secretion. We conclude that actin filaments negatively regulate mucin secretion basally in airway goblet cells and are dynamically remodeled in agonist-stimulated cells to promote exocytosis. lung; mucus; exocytosis  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号