首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   91篇
  免费   3篇
  94篇
  2021年   6篇
  2019年   1篇
  2018年   1篇
  2017年   2篇
  2016年   2篇
  2015年   2篇
  2014年   1篇
  2013年   6篇
  2012年   8篇
  2011年   8篇
  2010年   6篇
  2009年   3篇
  2008年   5篇
  2007年   9篇
  2006年   7篇
  2005年   5篇
  2003年   3篇
  2002年   3篇
  2001年   1篇
  1996年   1篇
  1995年   3篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1988年   1篇
  1987年   2篇
  1978年   1篇
  1975年   1篇
  1974年   1篇
  1969年   1篇
  1968年   1篇
排序方式: 共有94条查询结果,搜索用时 0 毫秒
1.
Hemoglobin concentrations ofChironomus cf.plumosus larvae were measured in two different habitats of the same pond. Larger larvae have higher hemoglobin concentrations than small larvae. There is strong indication that the animals of poorly oxygenated deep water, have higher hemoglobin concentrations than the animals from the well-oxygenated littoral zone.  相似文献   
2.
What are the minimal requirements to sustain an asymmetric cell cycle? Here we use mathematical modelling and forward genetics to reduce an asymmetric cell cycle to its simplest, primordial components. In the Alphaproteobacterium Caulobacter crescentus, cell cycle progression is believed to be controlled by a cyclical genetic circuit comprising four essential master regulators. Unexpectedly, our in silico modelling predicted that one of these regulators, GcrA, is in fact dispensable. We confirmed this experimentally, finding that ΔgcrA cells are viable, but slow-growing and elongated, with the latter mostly due to an insufficiency of a key cell division protein. Furthermore, suppressor analysis showed that another cell cycle regulator, the methyltransferase CcrM, is similarly dispensable with simultaneous gcrA/ccrM disruption ameliorating the cytokinetic and growth defect of ΔgcrA cells. Within the Alphaproteobacteria, gcrA and ccrM are consistently present or absent together, rather than either gene being present alone, suggesting that gcrA/ccrM constitutes an independent, dispensable genetic module. Together our approaches unveil the essential elements of a primordial asymmetric cell cycle that should help illuminate more complex cell cycles.  相似文献   
3.
KplE1 is one of the 10 prophage regions of Escherichia coli K12, located at 2464 kb on the chromosome. KplE1 is defective for lysis, but it is fully competent for excisive recombination. In this study, we have mapped the binding sites of the recombination proteins, namely IntS, TorI, and IHF on attL and attR, and the organization of these sites suggests that the intasome is architecturally different from the lambda canonical form. We also measured the relative contribution of these proteins to both excisive and integrative recombination by using a quantitative in vitro assay. These experiments show a requirement of the TorI excisionase for excisive recombination and of the IntS integrase for both integration and excision. Moreover, we observed a strong influence of the supercoiled state of the substrates. The KplE1 recombination module, composed of the integrase and excisionase genes together with the attL and attR DNA regions, is highly similar to that of several phages infecting various E. coli strains as well as Shigella flexneri and Shigella sonnei. The in vitro recombination data reveal that HK620 and KplE1 att sequences are exchangeable. This study thus defines a new site-specific recombination module, and implications for the mechanism and regulation of recombination are discussed.  相似文献   
4.
We report the use of chemical derivatization with MALDI-MS/MS analysis for de novo sequence analysis. Using three frequently used homology-based search algorithms, we were able to identify more than 40 proteins from banana, a nonmodel plant with unsequenced genome. Furthermore, this approach allowed the identification of different isoforms. We also observed that the identification score obtained varied according to the position of the peptide sequences in the query using the MS-Blast algorithm.  相似文献   
5.
Plant Cell, Tissue and Organ Culture (PCTOC) - Slow-growth is a biotechnological tool for medium-term conservation of plant germplasm under in vitro conditions. In the present study, we assessed...  相似文献   
6.
Intracerebroventricular administration of TRH induces excessive grooming behavior that is characterized by an important contribution of the elements scratching and paw licking. As compared with other grooming inducing peptides, the pattern of TRH-induced grooming resembles that induced by beta-endorphin rather than those elicited by ACTH or bombesin. TRH-induced excessive grooming is suppressed by pretreatment with haloperidol, naloxone or neurotensin. Haloperidol suppresses TRH-induced grooming in a general way, whereas the suppressive effect of the other drugs is mainly due to a selective reduction of TRH-induced excessive scratching. Combined treatments of rats with TRH and a submaximal dose of ACTH, bombesin or beta-endorphin do not result in higher grooming scores than with single peptide treatment. Excessive grooming elicited by water immersion is not affected by TRH. It is concluded that TRH is undoubtedly an excessive grooming inducing peptide. In situations where excessive grooming is elicited by other peptides or by water immersion, TRH does not further activate the operating systems involved in the existing excessive grooming.  相似文献   
7.
The aims of the study were to compare the myogenic and structural properties of middle cerebral arteries (MCAs) from the stroke-prone spontaneously hypertensive rat (SHRSP) with MCAs from the spontaneously hypertensive rat (SHR) before stroke development in SHRSP. Rats were fed a "Japanese" diet (low-protein rat chow and 1% NaCl in drinking water) for 8 wk, and cerebral arteries were studied in vitro at 12 wk using a pressure arteriograph. Systolic pressure was significantly increased in SHRSP compared with SHR at 12 wk. Between 60 and 180 mmHg, MCAs from SHR maintained an essentially constant diameter, i.e., displayed a "myogenic range," whereas the diameter of MCAs from SHRSP progressively increased as a function of pressure. Passive lumen diameter of MCAs from SHRSP was reduced at high pressure, and wall thickness and wall/lumen were increased, compared with SHR. Wall cross-sectional area was also increased in MCAs from SHRSP compared with the SHR, indicating growth. The stress-strain relationship was shifted to the left in MCAs from SHRSP, indicating decreased MCA distensibility compared with SHR. However, collagen staining with picrosirius red revealed a redistribution of collagen to the outer half of the MCA wall in SHRSP compared with SHR. These data demonstrate impaired myogenic properties in prestroke SHRSP compared with SHR, which may explain stroke development. The structural differences in MCAs from SHRSP compared with SHR were a consequence of both growth and a reduced distensibility.  相似文献   
8.
The ability of the telomeric DNA‐binding protein, TRF2, to stimulate t‐loop formation while preventing t‐loop deletion is believed to be crucial to maintain telomere integrity in mammals. However, little is known on the molecular mechanisms behind these properties of TRF2. In this report, we show that TRF2 greatly increases the rate of Holliday junction (HJ) formation and blocks the cleavage by various types of HJ resolving activities, including the newly identified human GEN1 protein. By using potassium permanganate probing and differential scanning calorimetry, we reveal that the basic domain of TRF2 induces structural changes to the junction. We propose that TRF2 contributes to t‐loop stabilisation by stimulating HJ formation and by preventing resolvase cleavage. These findings provide novel insights into the interplay between telomere protection and homologous recombination and suggest a general model in which TRF2 maintains telomere integrity by controlling the turnover of HJ at t‐loops and at regressed replication forks.  相似文献   
9.
10.
DNA-dependent protein kinase (DNA-PK) is a double-strand breaks repair complex, the subunits of which (KU and DNA-PKcs) are paradoxically present at mammalian telomeres. Telomere fusion has been reported in cells lacking these proteins, raising two questions: how is DNA–PK prevented from initiating classical ligase IV (LIG4)-dependent non-homologous end-joining (C-NHEJ) at telomeres and how is the backup end-joining (EJ) activity (B-NHEJ) that operates at telomeres under conditions of C-NHEJ deficiency controlled? To address these questions, we have investigated EJ using plasmid substrates bearing double-stranded telomeric tracks and human cell extracts with variable C-NHEJ or B-NHEJ activity. We found that (1) TRF2/RAP1 prevents C-NHEJ-mediated end fusion at the initial DNA–PK end binding and activation step and (2) DNA–PK counteracts a potent LIG4-independent EJ mechanism. Thus, telomeres are protected against EJ by a lock with two bolts. These results account for observations with mammalian models and underline the importance of alternative non-classical EJ pathways for telomere fusions in cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号