首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   58篇
  免费   0篇
  58篇
  2016年   1篇
  2015年   1篇
  2014年   2篇
  2013年   1篇
  2012年   3篇
  2011年   6篇
  2009年   3篇
  2008年   3篇
  2007年   1篇
  2006年   4篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2002年   3篇
  2001年   2篇
  2000年   2篇
  1998年   3篇
  1997年   2篇
  1996年   4篇
  1995年   1篇
  1994年   2篇
  1992年   2篇
  1991年   2篇
  1989年   1篇
  1987年   2篇
  1986年   1篇
  1984年   1篇
  1982年   2篇
排序方式: 共有58条查询结果,搜索用时 15 毫秒
1.
Effect of temperature on the optimal substrate for β-oxidation   总被引:1,自引:0,他引:1  
The enzyme carnitine palmitoyl tranferase (CPT) is able to use a range of fatty acids as substrates, with some variation in catalytic rate among tissue. The substrate giving maximal activity of the enzyme under optimal conditions (C16: 1) is similar in trout, salmon, goldfish, eel and tilapia. There is no evidence that thermal acclimation affects substrate preference for β-oxidation.  相似文献   
2.
3.
Summary Subpopulations of fast and slow fibres within the trunk musculature of elvers were examined using morphometric analysis of electron micrographs. Fibre regions were characterised by their histochemical staining characteristics, and individual fibres located using a coordinate mapping system utilising morphological features as reference points. Percentages of fibre volume occupied by mitochondria, myofibrils, sarcoplasmic reticulum (S.R.), and T-system were determined in each of the fibre groups, along a transect from the skin to the vertebral column (fibres 1–14, respectively).The fine structure of slow (red) fibres (1–2 fibres deep) is relatively homogeneous throughout its range, giving mean values for mitochondria, 21.4%; myofibrils, 61.0%; S.R., 2.10%; T-system, 0.31%. The fibres are relatively small (204 m2) and the mitochondrial cristae poorly developed.In contrast, there is a marked heterogeneity in the ultrastructure of fast (white) fibres, dependent on both position and size. The moderately small (333 m2) superficial fast fibres (3–4 fibres deep) have a significantly higher mitochondrial content (7.6%) than the larger deep fibres (1.2%) (6–12 fibres deep, 775 m2). The mean fractional volumes occupied by myofibrils, S.R., and T-system in the deep fibres are: 80.4%, 5.95%, and 0.38%, respectively. Fibres < 100 m2 constitute up to 5% of the fast muscle and have a significantly higher mitochondrial volume (4.3%), more glycogen granules, and a slightly lower volume of S.R. (5.57%) than larger fibres.It is suggested that metabolic subpopulations of fast fibres correspond to different stages of fibre growth. The relatively poorly developed S.R. of eel fast muscle is thought to be correlated with the low frequency, high amplitude nature of the propagated waveform found in anguilliform locomotion.  相似文献   
4.
5.
Jetha KA  Egginton S  Nash GB 《Biorheology》2003,40(5):567-576
Increase in the resistance to deformation of neutrophils upon exposure to the cold may impair their passage through microvessels. However, the potential for such rheological changes to cause prolonged microvascular obstruction in cooled tissue will depend on whether and at what rate the neutrophils recover on rewarming. We tested the ability of neutrophils to pass through micropore filters, and found that neutrophils cooled to 10 degrees C for 10-20 minutes could block either 5 microm or 8 microm pore filters. On return to 37 degrees C, flow resistance remained impaired briefly but recovered over about 5 minutes. The kinetics of changes in flow resistance in the cold and on rewarming were linked to kinetics of actin polymerisation during these periods. However, they were not closely linked to distortion of cell shape in the cold, which recovered only slowly with rewarming. The results suggest that while rigid neutrophils might occlude capillaries in cold tissue, mechanical obstruction should not be long-lived on rewarming. Moreover, rigid neutrophils washed out of cold tissue should experience only temporary mechanical trapping in remote tissues.  相似文献   
6.
Proteolysis of the capillary basement membrane is a hallmark of inflammation-mediated angiogenesis, but it is undetermined whether proteolysis plays a critical role in the process of activity-induced angiogenesis. Matrix metalloproteinases (MMPs) constitute the major class of proteases responsible for degradation of basement membrane proteins. We observed significant elevations of mRNA and protein levels of both MMP-2 and membrane type 1 (MT1)-MMP (2.9 +/- 0.7- and 1.5 +/- 0.1-fold above control, respectively) after 3 days of chronic electrical stimulation of rat skeletal muscle. Inhibition of MMP activity via the inhibitor GM-6001 prevented the growth of new capillaries as assessed by the capillary-to-fiber ratio (1.34 +/- 0.08 in GM-6001-treated muscles compared with 1.69 +/- 0.03 in control 7-day-stimulated muscles). This inhibition correlated with a significant reduction in the number of capillaries with observable breaks in the basement membrane, as assessed by electron microscopy (0.27 +/- 0.27% in GM-6001-treated muscles compared with 3.72 +/- 0.65% in control stimulated muscles). Proliferation of capillary-associated cells was significantly elevated by 2 days and remained elevated throughout 14 days of stimulation. Capillary-associated cell proliferation during muscle stimulation was not affected by MMP inhibition (80.3 +/- 9.3 nuclei in control and 63.5 +/- 8.5 nuclei in GM-6001-treated animals). We conclude that MMP proteolysis of capillary basement membrane proteins is a critical component of physiological angiogenesis, and we postulate that capillary-associated proliferation precedes and occurs independently of endothelial cell sprout formation.  相似文献   
7.
Maternal hypoxia is associated with a decrease in left ventricular capillary density while cardiac performance is preserved, implying a mismatch between metabolism and diffusive exchange. We hypothesised this requires a switch in substrate metabolism to maximise efficiency of ATP production from limited oxygen availability. Rat pups from pregnant females exposed to hypoxia (FIO2=0.12) at days 10-20 of pregnancy were grown to adulthood and working hearts perfused ex vivo. 14C-labelled glucose and 3H-palmitate were provided as substrates and metabolism quantified from recovery of 14CO2 and 3H2O, respectively. Hearts of male offspring subjected to Maternal Hypoxia showed a 20% decrease in cardiac output (P<0.05), despite recording a 2-fold increase in glucose oxidation (P<0.01) and 2.5-fold increase (P<0.01) in palmitate oxidation. Addition of insulin to Maternal Hypoxic hearts, further increased glucose oxidation (P<0.01) and suppressed palmitate oxidation (P<0.05), suggesting preservation in insulin signalling in the heart. In vitro enzyme activity measurements showed that Maternal Hypoxia increased both total and the active component of cardiac pyruvate dehydrogenase (both P<0.01), although pyruvate dehydrogenase sensitivity to insulin was lost (NS), while citrate synthase activity declined by 30% (P<0.001) and acetyl-CoA carboxylase activity was unchanged by Maternal Hypoxia, indicating realignment of the metabolic machinery to optimise oxygen utilisation. Capillary density was quantified and oxygen diffusion characteristics examined, with calculated capillary domain area increased by 30% (P<0.001). Calculated metabolic efficiency decreased 4-fold (P<0.01) for Maternal Hypoxia hearts. Paradoxically, the decline in citrate synthase activity and increased metabolism suggest that the scope of individual mitochondria had declined, rendering the myocardium potentially more sensitive to metabolic stress. However, decreasing citrate synthase may be essential to preserve local PO2, minimising regions of hypoxia and hence maximising the area of myocardium able to preserve cardiac output following maternal hypoxia.  相似文献   
8.
Although the expression of PECAM-1 (CD31) on vascular and haematopoietic cells within the bone marrow microenvironment has been recognized for some time, its physiological role within this niche remains unexplored. In this study we show that PECAM-1 influences steady state hematopoietic stem cell (HSC) progenitor numbers in the peripheral blood but not the bone marrow compartment. PECAM-1(-/-) mice have higher levels of HSC progenitors in the blood compared to their littermate controls. We show that PECAM-1 is required on both progenitors and bone marrow vascular cells in order for efficient transition between the blood and bone marrow to occur. We have identified key roles for PECAM-1 in both the regulation of HSC migration to the chemokine CXCL12, as well as maintaining levels of the matrix degrading enzyme MMP-9 in the bone marrow vascular niche. Using intravital microscopy and adoptive transfer of either wild type (WT) or PECAM-1(-/-) bone marrow precursors, we demonstrate that the increase in HSC progenitors in the blood is due in part to a reduced ability to migrate from blood to the bone marrow vascular niche. These findings suggest a novel role for PECAM-1 as a regulator of resting homeostatic progenitor cell numbers in the blood.  相似文献   
9.
10.
Acute cooling significantly increases energy demand in non-hibernators for the defence of core temperature but the contribution of the liver to thermogenesis is poorly understood. A two-tracer method to estimate lipid metabolism in cold-naïve control (CON) and cold-acclimated (CA) rats was employed to quantify hepatic rates of fat metabolism. Both fenofibrate, to increase liver mass and fat oxidation and dichloroacetate (DCA) to inhibit fat oxidation were used to alter lipid metabolism in CON animals. Following acute cooling, CA led to a doubling of the time to reach a core temperature 25 °C (P < 0.001), whereas DCA treatment decreased time of cooling (P < 0.01). DCA-treatment increased the gradient of Arrhenius-transformed rate–pressure product (P < 0.01). CA increased both palmitate uptake (P < 0.001) and β-oxidation (P < 0.01) whilst DCA treatment decreased uptake (P < 0.01) and β-oxidation (P < 0.05). Tissue-specific estimates of metabolism revealed that CA led to a 12-fold increase in β-oxidation for brown adipose tissue (P < 0.001) whilst fenofibrate halved β-oxidation in the liver (P < 0.01) despite doubling the liver mass (P < 0.001) and DCA decreased hepatic β-oxidation to 15% of control levels. Taken together, these results suggest that the liver has minimal contribution to thermogenesis in the rat, with brown adipose tissue significantly increasing both fat uptake and oxidation in response to CA.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号