首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1272篇
  免费   86篇
  2023年   5篇
  2022年   10篇
  2021年   24篇
  2020年   13篇
  2019年   15篇
  2018年   29篇
  2017年   15篇
  2016年   34篇
  2015年   51篇
  2014年   57篇
  2013年   73篇
  2012年   120篇
  2011年   84篇
  2010年   58篇
  2009年   53篇
  2008年   67篇
  2007年   54篇
  2006年   70篇
  2005年   46篇
  2004年   49篇
  2003年   33篇
  2002年   53篇
  2001年   23篇
  2000年   11篇
  1999年   15篇
  1998年   6篇
  1997年   8篇
  1995年   12篇
  1994年   7篇
  1993年   6篇
  1992年   11篇
  1991年   13篇
  1989年   7篇
  1988年   9篇
  1987年   7篇
  1986年   7篇
  1985年   6篇
  1982年   8篇
  1977年   6篇
  1975年   5篇
  1973年   9篇
  1971年   6篇
  1970年   6篇
  1967年   4篇
  1966年   4篇
  1958年   6篇
  1929年   4篇
  1928年   6篇
  1919年   6篇
  1851年   10篇
排序方式: 共有1358条查询结果,搜索用时 15 毫秒
1.
2.
3.
Tubulin-binding agents such as taxol, vincristine or vinblastine are well-established drugs in clinical treatment of metastatic cancer. However, because of their highly complex chemical structures, the synthesis and hence the supply issues are still quite challenging. Here we set on stage pretubulysin, a chemically accessible precursor of tubulysin that was identified as a potent microtubule-binding agent produced by myxobacteria. Although much simpler in chemical structure, pretubulysin abrogates proliferation and long-term survival as well as anchorage-independent growth, and also induces anoikis and apoptosis in invasive tumor cells equally potent to tubulysin. Moreover, pretubulysin posseses in vivo efficacy shown in a chicken chorioallantoic membrane (CAM) model with T24 bladder tumor cells, in a mouse xenograft model using MDA-MB-231 mammary cancer cells and finally in a model of lung metastasis induced by 4T1 mouse breast cancer cells. Pretubulysin induces cell death via the intrinsic apoptosis pathway by abrogating the expression of pivotal antiapoptotic proteins, namely Mcl-1 and Bcl-xL, and shows distinct chemosensitizing properties in combination with TRAIL in two- and three-dimensional cell culture models. Unraveling the underlying signaling pathways provides novel information: pretubulysin induces proteasomal degradation of Mcl-1 by activation of mitogen-activated protein kinase (especially JNK (c-Jun N-terminal kinase)) and phosphorylation of Mcl-1, which is then targeted by the SCFFbw7 E3 ubiquitin ligase complex for ubiquitination and degradation. In sum, we designate the microtubule-destabilizing compound pretubulysin as a highly promising novel agent for mono treatment and combinatory treatment of invasive cancer.  相似文献   
4.
The EphA2 receptor tyrosine kinase plays a central role in the regulation of cell adhesion and guidance in many human tissues. The activation of EphA2 occurs after proper dimerization/oligomerization in the plasma membrane, which occurs with the participation of extracellular and cytoplasmic domains. Our study revealed that the isolated transmembrane domain (TMD) of EphA2 embedded into the lipid bicelle dimerized via the heptad repeat motif L535X3G539X2A542X3V546X2L549 rather than through the alternative glycine zipper motif A536X3G540X3G544 (typical for TMD dimerization in many proteins). To evaluate the significance of TMD interactions for full-length EphA2, we substituted key residues in the heptad repeat motif (HR variant: G539I, A542I, G553I) or in the glycine zipper motif (GZ variant: G540I, G544I) and expressed YFP-tagged EphA2 (WT, HR, and GZ variants) in HEK293T cells. Confocal microscopy revealed a similar distribution of all EphA2-YFP variants in cells. The expression of EphA2-YFP variants and their kinase activity (phosphorylation of Tyr588 and/or Tyr594) and ephrin-A3 binding were analyzed with flow cytometry on a single cell basis. Activation of any EphA2 variant is found to occur even without ephrin stimulation when the EphA2 content in cells is sufficiently high. Ephrin-A3 binding is not affected in mutant variants. Mutations in the TMD have a significant effect on EphA2 activity. Both ligand-dependent and ligand-independent activities are enhanced for the HR variant and reduced for the GZ variant compared with the WT. These findings allow us to suggest TMD dimerization switching between the heptad repeat and glycine zipper motifs, corresponding to inactive and active receptor states, respectively, as a mechanism underlying EphA2 signal transduction.  相似文献   
5.
6.

Book Review

Principles of environmental physicsJ.L. Monteith and M.H. Unsworth Second edition. London: Edward Arnold, 1990. xii + 291 pages. £30.00 (hardback), £14.95 (paperback). ISBN 0-7131-2931-X  相似文献   
7.
8.
9.
Buchheit, R. G. (Union Carbide Corp., Tonawanda, N.Y.), H. R. Schreiner, and G. F. Doebbler. Growth responses of Neurospora crassa to increased partial pressures of the noble gases and nitrogen. J. Bacteriol. 91:622-627. 1966.-Growth rate of the fungus Neurospora crassa depends in part on the nature of metabolically "inert gas" present in its environment. At high partial pressures, the noble gas elements (helium, neon, argon, krypton, and xenon) inhibit growth in the order: Xe > Kr> Ar > Ne > He. Nitrogen (N(2)) closely resembles He in inhibitory effectiveness. Partial pressures required for 50% inhibition of growth were: Xe (0.8 atm), Kr (1.6 atm), Ar (3.8 atm), Ne (35 atm), and He ( approximately 300 atm). With respect to inhibition of growth, the noble gases and N(2) differ qualitatively and quantitatively from the order of effectiveness found with other biological effects, i.e., narcosis, inhibition of insect development, depression of O(2)-dependent radiation sensitivity, and effects on tissue-slice glycolysis and respiration. Partial pressures giving 50% inhibition of N. crassa growth parallel various physical properties (i.e., solubilities, solubility ratios, etc.) of the noble gases. Linear correlation of 50% inhibition pressures to the polarizability and of the logarithm of pressure to the first and second ionization potentials suggests the involvement of weak intermolecular interactions or charge-transfer in the biological activity of the noble gases.  相似文献   
10.
The gravitational work of breathing was determined by measuring the vertical motion of body mass. The subject, seated or lying supine on a force platform, performed breathing maneuvers in which rib cage volume (Vrc) and abdominal volume (Vab) were changed in varying proportions. The increment in the vertical force exerted on the platform and Vrc and Vab were measured over the course of each maneuver. The force signal was integrated twice with respect to time to obtain the change in the product of mass and height of the subject. This was multiplied by the gravitational acceleration to obtain the change in the gravitational potential (Ug). Simultaneous values of Ug, Vrc, and Vab were taken from the data, and the values of the coefficients for which the following equation best fit these values were determined: Ug = a1 Vrc + a2 Vab + (1/2)a11 Vrc2 + a12 Vrc Vab + (1/2)a22 Vab2. The coefficients a1 and a2 can be interpreted as the values of the expiratory gravitational forces on the rib cage and abdomen, respectively. In the seated posture, the force on the rib cage is expiratory and the force on the abdomen is inspiratory; the magnitudes of both are approximately 8 cmH2O. In the supine posture, both are expiratory forces of approximately 9 cmH2O. The coefficients of the quadratic terms in Ug are all positive, and the gravitational work per unit volume of chest wall expansion increases with increasing volume in both postures. The coefficients of the quadratic terms can be interpreted as gravitational contributions to the elastances of the compartments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号