首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   0篇
  2020年   4篇
  2019年   4篇
  2018年   1篇
  2016年   1篇
  2013年   3篇
  2012年   1篇
  2009年   1篇
排序方式: 共有15条查询结果,搜索用时 15 毫秒
1.
Tyrosinase is a type 3 copper enzyme responsible for skin pigmentation disorders, skin cancer, and enzymatic browning of vegetables and fruits. In the present article, 12 small molecules of 2‐benzylidenehydrazine‐1‐carbothioamide were designed, synthesized and evaluated for their anti‐tyrosinase activities followed by molecular docking and pharmacophore‐based screening. Among synthesized thiosemicarbazone derivatives, one compound, (2E)‐2‐[(4‐nitrophenyl)methylidene]hydrazine‐1‐carbothioamide, is the strongest inhibitor of mushroom tyrosinase with IC50 of 0.05 μM which demonstrated a 128‐fold increase in potency compared to the positive control. Kinetic studies also revealed mix type inhibition by this compound. Docking studies confirmed the complete fitting of the synthesized compounds into the tyrosinase active site. The results underline the potential of 2‐benzylidenehydrazine‐1‐carbothioamides as potent pharmacophore to extend the tyrosinase inhibition in drug discovery.  相似文献   
2.
Plant and Soil - Phytoextraction is an in situ technique that can be applied to minerals and mining wastes using hyperaccumulator plants to purposely bio-concentrate high levels of metals or...  相似文献   
3.
Alzheimer disease (AD) is a neuronal dementia for which no treatment has been consolidated yet. Major pathologic hallmark of AD is the aggregated extracellular amyloid-β plaques in the brains of disease sufferers. Aβ-peptide is a major component of amyloid plaques and is produced from amyloid precursor protein (APP) via the proteolysis action. An aspartyl protease known as β-site amyloid precursor protein cleaving enzyme (BACE-1) is responsible for this proteolytic action. Distinctive role of BACE-1 in AD pathogenesis has made it a validated target to develop anti-Alzheimer agents. Our structure-based virtual screening method led to the synthesis of novel 3,5-bis-N-(aryl/heteroaryl) carbamoyl-4-aryl-1,4-dihydropyridine BACE-1 inhibitors (6a6p; in vitro hits). Molecular docking and DFT-based ab initio studies using B3LYP functional in association with triple-ζ basis set (TZV) proposed binding mode and binding energies of ligands in the active site of the receptor. In vitro BACE-1 inhibitory activities were determined by enzymatic fluorescence resonance energy transfer (FRET) assay. Most of the synthesized dihydropyridine scaffolds were active against BACE-1 while 6d, 6k, 6n and 6a were found to be the most potent molecules with IC50 values of 4.21, 4.27, 4.66 and 6.78 μM, respectively. Superior BACE-1 inhibitory activities were observed for dihydropyridine derivatives containing fused/nonfused thiazole containing groups, possibly attributing to the additional interactions with S2–S3 subpocket residues. Relatively reliable correlation between calculated binding energies and experimental BACE-1 inhibitory activities was achieved (R2 = 0.51). Moreover, compounds 6d, 6k, 6n and 6a exhibited relatively no calcium channel blocking activity with regard to nifedipine suggesting them as appropriate candidates for further modification(s) to BACE-1 inhibitory scaffolds.  相似文献   
4.
A series of 16 novel 1,2,4-triazine derivatives bearing hydrazone moiety (7a7p) have been designed, synthesized and evaluated for their activity to inhibit IL-1β and TNF-α production. All compounds are reported for the first time. The chemical structures of all compounds were confirmed by spectroscopic methods and elemental analyzes. Most of the synthesized compounds were proved to have potent anti-cytokine activity and low toxicity on PBMC and MCF-7 cell lines. Compounds 7f, 7k, 7l and 7j presented simultaneously good levels of inhibition of both cytokines. Moreover, compound 7l exhibited good anti-inflammatory effect in carrageenan-induced rat paw edema. The results of Western blotting demonstrated that the anti-cytokine potential of compound 7l is mainly mediated through the inhibition of p38 MAPK signaling pathway. Molecular docking was performed to position compound 7l into p38α binding site in order to explore the potential target. The information of this work might be helpful for the design and synthesis of novel scaffold toward the development of new therapeutic agent to fight against inflammatory diseases.  相似文献   
5.
Computational evaluation of ligand-receptor binding via docking strategy is a well established approach in structure-based drug design. This technique has been applied frequently in developing molecules of biological interest. However, any procedure would require an optimization set up to be more efficient, economic and time-saving. Advantages of modern statistical optimization methods over conventional one-factor-at-a-time studies have been well revealed. The optimization by experimental design provides a combination of factor levels simultaneously satisfying the requirements considered for each of the responses and factors. In this study, response surface method was applied to optimize the prominent factors (number of genetic algorithm runs, population size, maximum number of evaluations, torsion degrees for ligand and number of rotatable bonds in ligand) in AutoDock4.2-based binding study of small molecule β-secretase inhibitors as anti-alzheimer agents. Results revealed that a number of rotatable bonds in ligand and maximum number of docking evaluations were determinant variables affecting docking outputs. The interference between torsion degrees for ligand and number of genetic algorithm runs for docking procedure was found to be the significant interaction term in our model. Optimized docking outputs exhibited a high correlation with experimental fluorescence resonance energy transfer-based IC(50)s for β-secretase inhibitors (R(2)?=?0.9133).  相似文献   
6.

Background

The development of CRISPR genome editing has transformed biomedical research. Most applications reported thus far rely upon the Cas9 protein from Streptococcus pyogenes SF370 (SpyCas9). With many RNA guides, wildtype SpyCas9 can induce significant levels of unintended mutations at near-cognate sites, necessitating substantial efforts toward the development of strategies to minimize off-target activity. Although the genome-editing potential of thousands of other Cas9 orthologs remains largely untapped, it is not known how many will require similarly extensive engineering to achieve single-site accuracy within large genomes. In addition to its off-targeting propensity, SpyCas9 is encoded by a relatively large open reading frame, limiting its utility in applications that require size-restricted delivery strategies such as adeno-associated virus vectors. In contrast, some genome-editing-validated Cas9 orthologs are considerably smaller and therefore better suited for viral delivery.

Results

Here we show that wildtype NmeCas9, when programmed with guide sequences of the natural length of 24 nucleotides, exhibits a nearly complete absence of unintended editing in human cells, even when targeting sites that are prone to off-target activity with wildtype SpyCas9. We also validate at least six variant protospacer adjacent motifs (PAMs), in addition to the preferred consensus PAM (5′-N4GATT-3′), for NmeCas9 genome editing in human cells.

Conclusions

Our results show that NmeCas9 is a naturally high-fidelity genome-editing enzyme and suggest that additional Cas9 orthologs may prove to exhibit similarly high accuracy, even without extensive engineering.
  相似文献   
7.
International Journal of Peptide Research and Therapeutics - β-secretase 1 (BACE1) plays a pivotal role in the pathology of Alzheimer?s disease via accumulation beta amyloid in the...  相似文献   
8.
A novel series of phthalimide‐dithiocarbamate hybrids was synthesized and evaluated for in vitro inhibitory potentials against acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). The anti‐cholinesterase results indicated that among the synthesized compounds, the compounds 7g and 7h showed the most potent anti‐AChE and anti‐BuChE activities, respectively. Molecular docking and dynamic studies of the compounds 7g and 7h , respectively, in the active site of AChE and BuChE revealed that these compounds as well interacted with studied cholinesterases. These compounds also possessed drug‐like properties and were able to cross the BBB.  相似文献   
9.
The inhibition of β secretase (BACE1) is potentially important approach to treatment of Alzheimer disease (AD). A novel series of 4-bromophenyl piperazine derivatives coupled to the phenylimino-2H-chromen-3-carboxamide scaffold were investigated as BACE1 inhibitors in this study. Docking study suggested that the phenyl-imino group of the scaffold establishes favorable π–π stacking interaction with side chain of Phe108 of flap pocket. Some of the docking proposed derivatives were synthesized and evaluated for BACE1 inhibitory activity using a FRET-based assay. High BACE1 inhibitory activities were observed from derivatives containing fused heteroaromtic groups attached through the aliphatic linkage to the N4-piperazine moiety, which may be attributed to the engagement of effective interactions with S1–S′1 sub-pocket residues. Of the most potent compounds, 9e displayed an IC50 value for BACE1 of 98 nM. Some of these derivatives demonstrated good inhibitory activity on Aβ production in N2a-APPswe cells at 5 and 10 μM. These compounds might be considered as promising BACE1 inhibitory agents that could lower Aβ production in AD.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号