首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   1篇
  2018年   1篇
  2017年   1篇
  2014年   1篇
  2013年   1篇
  2011年   2篇
  2008年   1篇
  2002年   1篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
Amelogenins, the major protein component of the mineralizing enamel extracellular matrix, are critical for normal enamel formation as documented in the linkage studies of a group of inherited disorders, with defective enamel formation, called Amelogenesis imperfecta. Recent cases of Amelogenesis imperfecta include mutations that resulted in truncated amelogenin protein lacking the hydrophilic C-terminal amino acids. Current advances in knowledge on amelogenin structure, nanospheres assembly and their effects on crystal growth have supported the hypothesis that amelogenin nanospheres provide the organized microstructure for the initiation and modulated growth of enamel apatite crystals. In order to evaluate the function of the conserved hydrophilic C-terminal telopeptide during enamel biomineralization, the present study was designed to analyze the self-assembly and apatite binding behavior of amelogenin proteins and their isoforms lacking the hydrophilic C-terminal. We applied dynamic light scattering to investigate the size distribution of amelogenin nanospheres formed by a series of native and recombinant proteins. In addition, the apatite binding properties of these amelogenins were examined using commercially available hydroxyapatite crystals. Amelogenins lacking the carboxy-terminal (native P161 and recombinant rM166) formed larger nanospheres than those formed by their full-length precursors: native P173 and recombinant rM179. These data suggest that after removal of the hydrophilic carboxy-terminal segment further association of the nanospheres takes place through hydrophobic interactions. The affinity of amelogenins lacking the carboxy-terminal regions to apatite crystals was significantly lower than their parent amelogenins. These structure-functional analyses suggest that the hydrophilic carboxy-terminal plays critical functional roles in mineralization of enamel and that the lack of this segment causes abnormal mineralization.  相似文献   
2.
Membrane fusion depends on conserved components and is responsible for organelle biogenesis and vesicular trafficking. Yeast vacuoles are dynamic structures analogous to mammalian lysosomes. We report here that yeast Env7 is a novel palmitoylated protein kinase ortholog that negatively regulates vacuolar membrane fusion. Microscopic and biochemical studies confirmed the localization of tagged Env7 at the vacuolar membrane and implicated membrane association via the palmitoylation of its N-terminal Cys13 to -15. In vitro kinase assays established Env7 as a protein kinase. Site-directed mutagenesis of the Env7 alanine-proline-glutamic acid (APE) motif Glu269 to alanine results in an unstable kinase-dead allele that is stabilized and redistributed to the detergent-resistant fraction by interruption of the proteasome system in vivo. Palmitoylation-deficient Env7C13-15S is also kinase dead and mislocalizes to the cytoplasm. Microscopy studies established that env7Δ is defective in maintaining fragmented vacuoles during hyperosmotic response and in buds. ENV7 function is not redundant with a similar role of vacuolar membrane kinase Yck3, as the two do not share a substrate, and ENV7 is not a suppressor of yck3Δ. Bayesian phylogenetic analyses strongly support ENV7 as an ortholog of the gene encoding human STK16, a Golgi apparatus protein kinase with undefined function. We propose that Env7 function in fusion/fission dynamics may be conserved within the endomembrane system.  相似文献   
3.
The late endosome and vacuole of yeast Saccharomyces cerevisiae are functionally equivalent to the mammalian late endosome and lysosome. The late endosome is the convergence point of the biosynthetic and endocytic trafficking to the vacuole. Here, we describe a novel immunodetection screen to isolate mutants defective in trafficking the soluble hydrolase carboxypeptidase Y (CPY) at the late endosome to vacuole interface (env mutants). Mutants exhibit vacuolar morphology and endocytosis defects as assayed by electron, fluorescent, and nomarski microscopy. In biochemical assays, they internally accumulate p2CPY in a dense membrane compartment lacking vacuolar properties yet display normal secretion phenotypes. The results suggest vacuolar morphology and function defects that are exclusively at the late endosome/vacuole interface. env mutants define five complementation groups. The first gene of the collection to be cloned, ENV1 is allelic to VPS35 whose established function is in retrograde trafficking from late endosome to trans-Golgi network (TGN). Microscopic, biochemical, and growth analyses establish that env1 is distinct from other alleles of VPS35 in vacuolar morphology, growth characteristics, and internal accumulation of p2CPY. Our results indicate that ENV genes may define new gene functions at the late endosome to vacuole interface.  相似文献   
4.
5.
Palmitoylation at cysteine residues is the only known reversible form of lipidation and has been implicated in protein membrane association as well as function. Many palmitoylated proteins have regulatory roles in dynamic cellular processes, including membrane fusion. Recently, we identified Env7 as a conserved and palmitoylated protein kinase involved in negative regulation of membrane fusion at the lysosomal vacuole. Env7 contains a palmitoylation consensus sequence, and substitution of its three consecutive cysteines (Cys13–Cys15) results in a non-palmitoylated and cytoplasmic Env7. In this study, we further dissect and define the role(s) of individual cysteines of the consensus sequence in various properties of Env7 in vivo. Our results indicate that more than one of the cysteines serve as palmitoylation substrates, and any pairwise combination is essential and sufficient for near wild type levels of Env7 palmitoylation, membrane localization, and phosphorylation. Furthermore, individually, each cysteine can serve as a minimum requirement for distinct aspects of Env7 behavior and function in cells. Cys13 is sufficient for membrane association, Cys15 is essential for the fusion regulatory function of membrane-bound Env7, and Cys14 and Cys15 are redundantly essential for protection of membrane-bound Env7 from proteasomal degradation. A role for Cys14 and Cys15 in correct sorting at the membrane is also discussed. Thus, palmitoylation at the N-terminal cysteines of Env7 directs not only its membrane association but also its stability, phosphorylation, and cellular function.  相似文献   
6.
Vacuoles of yeast Saccharomyces cerevisiae are functionally analogous to mammalian lysosomes. Both are cellular organelles responsible for macromolecular degradation, ion/pH homeostasis, and stress survival. We hypothesized that undefined gene functions remain at post-endosomal stage of vacuolar events and performed a genome-wide screen directed at such functions at the late endosome and vacuole interface - ENV genes. The immunodetection screen was designed to identify mutants that internally accumulate precursor form of the vacuolar hydrolase carboxypeptidase Y (CPY). Here, we report the uncovering and initial characterizations of twelve ENV genes. The small size of the collection and the lack of genes previously identified with vacuolar events are suggestive of the intended exclusive functional interface of the screen. Most notably, the collection includes four novel genes ENV7, ENV9, ENV10, and ENV11, and three genes previously linked to mitochondrial processes - MAM3, PCP1, PPE1. In all env mutants, vesicular trafficking stages were undisturbed in live cells as assessed by invertase and active α-factor secretion, as well as by localization of the endocytic fluorescent marker FM4-64 to the vacuole. Several mutants exhibit defects in stress survival functions associated with vacuoles. Confocal fluorescence microscopy revealed the collection to be significantly enriched in vacuolar morphologies suggestive of fusion and fission defects. These include the unique phenotype of lumenal vesicles within vacuoles in the novel env9Δ mutant and severely fragmented vacuoles upon deletion of GET4, a gene recently implicated in tail anchored membrane protein insertion. Thus, our results establish new gene functions in vacuolar function and morphology, and suggest a link between vacuolar and mitochondrial events.  相似文献   
7.
The yeast vacuole is functionally and structurally equivalent to the mammalian lysosome. Delivery of resident and cargo proteins to the lysosome is vital for proper cellular operations, and failure to correctly target proteins to the organelle is correlated with the development of neurodegenerative and lysosomal storage diseases. We previously reported a novel mutant screen for vacuolar trafficking defects in yeast Saccharomyces cerevisiae that resulted in the isolation of env1, an allelic mutant of VPS35. As a member of the retromer complex, Vps35p binds directly to cargos and facilitates their retrograde transport to trans Golgi from endosomes. Our previous studies established that env1 exhibits unique pleiotropic phenotype in comparison to other tested VPS35 alleles including severe growth sensitivity to hygromycin B and internal accumulation of the precursor form of the vacuolar enzyme carboxypeptidase Y. Here, through a combination of sub-cellular fractionation and indirect immunofluorescence microscopy, we confirm and extend the unique phenotype of env1 to processing and localization of additional proteins within the vacuolar trafficking pathway. In comparative studies with a null and an allelic mutant of VPS35, env1 exhibited unique processing defects of retromer-independent vacuolar membrane enzyme alkaline phosphatase at the vacuole and significant Golgi localization of retromer cargos Vps10p and Kex2p despite compromised trafficking at the Golgi and late endosome interface.  相似文献   
8.
BAT‐controlled thermogenic activity is thought to be required for its capacity to prevent the development of insulin resistance. This hypothesis predicts that mediators of thermogenesis may help prevent diet‐induced insulin resistance. We report that the mitochondrial fusion protein Mitofusin 2 (Mfn2) in BAT is essential for cold‐stimulated thermogenesis, but promotes insulin resistance in obese mice. Mfn2 deletion in mice through Ucp1‐cre (BAT‐Mfn2‐KO) causes BAT lipohypertrophy and cold intolerance. Surprisingly however, deletion of Mfn2 in mice fed a high fat diet (HFD) results in improved insulin sensitivity and resistance to obesity, while impaired cold‐stimulated thermogenesis is maintained. Improvement in insulin sensitivity is associated with a gender‐specific remodeling of BAT mitochondrial function. In females, BAT mitochondria increase their efficiency for ATP‐synthesizing fat oxidation, whereas in BAT from males, complex I‐driven respiration is decreased and glycolytic capacity is increased. Thus, BAT adaptation to obesity is regulated by Mfn2 and with BAT‐Mfn2 absent, BAT contribution to prevention of insulin resistance is independent and inversely correlated to whole‐body cold‐stimulated thermogenesis.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号