首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   390篇
  免费   20篇
  410篇
  2023年   4篇
  2022年   1篇
  2021年   10篇
  2020年   3篇
  2019年   9篇
  2018年   15篇
  2017年   12篇
  2016年   14篇
  2015年   18篇
  2014年   15篇
  2013年   20篇
  2012年   37篇
  2011年   35篇
  2010年   16篇
  2009年   14篇
  2008年   25篇
  2007年   24篇
  2006年   29篇
  2005年   16篇
  2004年   11篇
  2003年   20篇
  2002年   13篇
  2001年   2篇
  2000年   5篇
  1998年   1篇
  1997年   1篇
  1996年   2篇
  1995年   2篇
  1994年   1篇
  1993年   2篇
  1992年   2篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1988年   3篇
  1987年   1篇
  1986年   2篇
  1985年   3篇
  1984年   1篇
  1982年   1篇
  1981年   1篇
  1980年   2篇
  1979年   3篇
  1978年   1篇
  1975年   4篇
  1973年   3篇
  1966年   1篇
  1953年   1篇
排序方式: 共有410条查询结果,搜索用时 0 毫秒
1.
Oxygen and CO2 exchange were measured concurrently in leaves of shade-grownAlocasia macrorrhiza (L.) G. Don during lightflecks consisting of short periods of high photon flux density (PFD) superimposed on a low-PFD background illumination. Oxygen exchange was measured with a zirconium-oxide ceramic cell in an atmosphere containing 1 600 bar O2 and 350 bar CO2. Following an increase in PFD from 10 to 500 mol photons·m-2·s-1, O2 evolution immediately increased to a maximum rate that was about twice as high as the highest CO2-exchange rates that were observed. Oxygen evolution then decreased over the next 5–10 s to rates equal to the much more slowly increasing rates of CO2 uptake. When the PFD was decreased at the end of a lightfleck, O2 evolution decreased nearly instantaneously to the low-PFD rate while CO2 fixation continued at an elevated rate for about 20 s. When PFD during the lightfleck was at a level that was limiting for steady-state CO2 exchange, then the O2-evolution rate was constant during the lightfleck. This observed pattern of O2 evolution during lightflecks indicated that the maximum rate of electron transport exceeded the maximum rate of CO2 fixation in these leaves. In noninduced leaves, rates of O2 evolution for the first fraction of a second were about as high as rates in fully induced leaves, indicating that O2 evolution and the electron-transport chain are not directly affected by the leaf's induction state. Severalfold differences between induced and noninduced leaves in O2 evolution during a lightfleck were seen for lightflecks longer than a few seconds where the rate of O2 evolution appeared to be limited by the utilization of reducing power in CO2 fixation.Abbreviation PFD photon flux density (of photosynthetically active radiation)  相似文献   
2.
M. Miko  B. Chance 《BBA》1975,396(2):165-174
This paper describes the uncoupling effect of three isothiocyanates: p-bromophenylisothiocyanate, 4,4′-diisothiocyanatebiphenyl and β-naphtylmethylisothiocyanate on the respiration of Ehrlich-Lettré cells and isolated mitochondria. The isothiocyanates are similar to other uncouplers (such as 2,4-dinitrophenol and carbonyl cyanide p-trifluoromethoxyphenylhydrazone) in that they: 1. stimulate respiration of state 4 mitochondria; 2. stimulate mitochondrial ATPase activity; 3. release the inhibition of mitochondrial respiration by oligomycin and 4. inhibit both mitochondrial respiration and mitochondrial ATPase activity at higher molar concentrations. The uncoupling activity of these isothiocyanates correlates well with their biological activity. Maximal activation of a latent mitochondrial ATPase activity of rat liver mitochondria in the presence of p-bromophenylisothiocyanate was found at a concentration of 15 μM. The investigated isothiocyanates differ significantly in their solubility in organic solvents and their chemical reactivity. We assume that the greater the partition coefficient in a series of isothiocyanates grouped according to the increasing value of log P (partition coefficient for the system octanol/water, 25 °C), the greater will be their uncoupling activity, but only up to a certain degree. Any further increase of log P will be marked by a decrease of this activity.  相似文献   
3.
This paper describes the uncoupling effect of three isothiocyanates: p-bromophenylisothiocyanate, 4,4'-diisothiocyanatebiphenyl and beta-naphtylemthylisothiocyanate on the respiration of Ehrlich-Lettré cells and isolated mitochondria. The isothiocyanates are similar to other uncouplers (such as 2,4-dinitrophenol and carbonyl cyanide p-trifluoromethoxyphenylhydrazone) in that they: 1. stimulate respiration of state 4 mitochondria; 2. stimulate mitochondrial ATPase activity; 3. release the inhibition of mitochondrial respiration by oligomycin and 4. inhibit both mitochondrial respiration and mitochondrial ATPase activity at higher molar concentrations. The incoupling activity of these isothiocyanates correlates well with their biological activity. Maximal activation of a latent mitochondrial ATPase activity of rat liver mitochondria in the presence of p-bromophenylisothiocyanate was found at a concentration of 15 muM. The investigated isothiocyanates differ significantly in their solubility in organic solvents and their chemical reactivity. We assume that the greater the partition coefficient in a series of isothiocyanates grouped according to the increasing value of log P (partition coefficient for the system octanol/water, 25 degrees C), the greater will be their uncoupling activity, but only up to a certain degree. Any further increase of log P will be marked by a decrease of this activity.  相似文献   
4.
5.
6.
The use of Process Analytical Technology tools coupled with chemometrics has been shown great potential for better understanding and control of mammalian cell cultivations through real-time process monitoring. In-line Raman spectroscopy was utilized to determine the glucose concentration of the complex bioreactor culture medium ensuring real-time information for our process control system. This work demonstrates a simple and fast method to achieve a robust partial least squares calibration model under laboratory conditions in an early phase of the development utilizing shake flask and bioreactor cultures. Two types of dynamic feeding strategies were accomplished where the multi-component feed medium additions were controlled manually and automatically based on the Raman monitored glucose concentration. The impact of these dynamic feedings was also investigated and compared to the traditional bolus feeding strategy on cellular metabolism, cell growth, productivity, and binding activity of the antibody product. Both manual and automated dynamic feeding strategies were successfully applied to maintain the glucose concentration within a narrower and lower concentration range. Thus, besides glucose, the glutamate was also limited at low level leading to reduced production of inhibitory metabolites, such as lactate and ammonia. Consequently, these feeding control strategies enabled to provide beneficial cultivation environment for the cells. In both experiments, higher cell growth and prolonged viable cell cultivation were achieved which in turn led to increased antibody product concentration compared to the reference bolus feeding cultivation.  相似文献   
7.
Copper (I) binding by metallochaperone transport proteins prevents copper oxidation and release of the toxic ions that may participate in harmful redox reactions. The Cu (I) complex of the peptide model of a Cu (I) binding metallochaperone protein, which includes the sequence MTCSGCSRPG (underlined is conserved), was determined in solution under inert conditions by NMR spectroscopy.NMR is a widely accepted technique for the determination of solution structures of proteins and peptides. Due to difficulty in crystallization to provide single crystals suitable for X-ray crystallography, the NMR technique is extremely valuable, especially as it provides information on the solution state rather than the solid state. Herein we describe all steps that are required for full three-dimensional structure determinations by NMR. The protocol includes sample preparation in an NMR tube, 1D and 2D data collection and processing, peak assignment and integration, molecular mechanics calculations, and structure analysis. Importantly, the analysis was first conducted without any preset metal-ligand bonds, to assure a reliable structure determination in an unbiased manner.  相似文献   
8.

Background

Methanogenesis can indicate the fermentation activity of the gastrointestinal anaerobic flora. Methane also has a demonstrated anti-inflammatory potential. We hypothesized that enriched methane inhalation can influence the respiratory activity of the liver mitochondria after an ischemia-reperfusion (IR) challenge.

Methods

The activity of oxidative phosphorylation system complexes was determined after in vitro methane treatment of intact liver mitochondria. Anesthetized Sprague-Dawley rats subjected to standardized 60-min warm hepatic ischemia inhaled normoxic air (n = 6) or normoxic air containing 2.2% methane, from 50 min of ischemia and throughout the 60-min reperfusion period (n = 6). Measurement data were compared with those on sham-operated animals (n = 6 each). Liver biopsy samples were subjected to high-resolution respirometry; whole-blood superoxide and hydrogen peroxide production was measured; hepatocyte apoptosis was detected with TUNEL staining and in vivo fluorescence laser scanning microscopy.

Results

Significantly decreased complex II-linked basal respiration was found in the normoxic IR group at 55 min of ischemia and a lower respiratory capacity (~60%) and after 5 min of reperfusion. Methane inhalation preserved the maximal respiratory capacity at 55 min of ischemia and significantly improved the basal respiration during the first 30 min of reperfusion. The IR-induced cytochrome c activity, reactive oxygen species (ROS) production and hepatocyte apoptosis were also significantly reduced.

Conclusions

The normoxic IR injury was accompanied by significant functional damage of the inner mitochondrial membrane, increased cytochrome c activity, enhanced ROS production and apoptosis. An elevated methane intake confers significant protection against mitochondrial dysfunction and reduces the oxidative damage of the hepatocytes.  相似文献   
9.
10.
Raman spectroscopy as a process analytical technology tool was implemented for the monitoring and control of ethanol fermentation carried out with Saccharomyces cerevisiae. The need for the optimization of bioprocesses such as ethanol production, to increase product yield, enhanced the development of control strategies. The control system developed by the authors utilized noninvasive Raman measurements to avoid possible sterilization problems. Real-time data analysis was applied using partial least squares regression (PLS) method. With the aid of spectral pretreatment and multivariate data analysis, the monitoring of glucose and ethanol concentration was successful during yeast fermentation with the prediction error of 4.42 g/L for glucose and 2.40 g/L for ethanol. By Raman spectroscopy-based feedback control, the glucose concentration was maintained at 100 g/L by the automatic feeding of concentrated glucose solution. The control of glucose concentration during fed-batch fermentation resulted in increased ethanol production. Ethanol yield of 86% was achieved compared to the batch fermentation when 75 % yield was obtained. The results show that the use of Raman spectroscopy for the monitoring and control of yeast fermentation is a promising way to enhance process understanding and achieve consistently high production yield.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号