首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
  2017年   1篇
  2015年   2篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
2.

Background and aims

Copper (Cu) rich soils derived from rocks of the Katangan Copperbelt in the south-eastern Democratic Republic of Congo (DRC) support a rich diversity of metallophytes including 550 heavy metal tolerant; 24 broad Cu soil endemic; and 33 strict Cu soil endemic plant species. The majority of the plant species occur on prominent Cu hills scattered along the copperbelt. Heavy metal mining on the Katangan Copperbelt has resulted in extensive degradation and destruction of the Cu hill ecosystems. As a result, approximately 80 % of the strict Cu endemic plant species are classified as threatened according to IUCN criteria and represent a conservation priority. Little is known about the soil Cu tolerance optimum of the Cu endemic plant species. The purpose of this study was to quantify the soil Cu concentration (Cu edaphic niche) of four Cu endemic plant species to inform soil propagation conditions and microhabitat site selection for planting of the species in Cu hill ecosystem restoration.

Methods

The soil Cu concentration tolerance of Cu endemic plant species was studied including Crotalaria cobalticola (CRCO); Gladiolus ledoctei (GLLE); Diplolophium marthozianum (DIMA); and Triumfetta welwitschii var. rogersii (TRWE-RO). The in situ natural habitat distributions of the Cu endemic plant species with respect to soil Cu concentration (Cu edaphic niche) was calculated by means of a generalised additive model. Additionally, the seedling emergence and growth of the four Cu endemic plant species in three soil Cu concentrations was tested ex situ and the results were compared to that of the natural habitat soil Cu concentration optimum (Cu edaphic niche).

Results

CRCO exhibited greater performance on the highest soil Cu concentration, consistent with its calculated Cu edaphic niche occurring at the highest soil Cu concentrations. In contrast, both DIMA and TRWE-RO exhibited greatest performance at the lowest soil Cu concentration, despite the calculated Cu edaphic niche occurring at moderate soil Cu concentrations. GLLE exhibited equal performances in the entire range of soil Cu concentrations.

Conclusions

These results suggest that CRCO evolved via the edaphic specialization model where it is most competitive in Cu hill habitat with the highest soil Cu concentration. In comparison, DIMA and TRWE-RO appear to have evolved via the endemism refuge model, which indicates that the species were excluded into (i.e., took refuge in) the lower plant competition Cu hill habitat due to their inability to effectively compete with higher plant competition on normal soils. The soil Cu edaphic niche determined for the four species will be useful in conservation activities including informing soil propagation conditions and microhabitat site selection for planting of the species in Cu hill ecosystem restoration.
  相似文献   
3.
Recent neuroimaging work has suggested that aggressive behaviour (AB) is associated with structural and functional brain abnormalities in processes subserving emotion processing and regulation. However, most neuroimaging studies on AB to date only contain relatively small sample sizes. To objectively investigate the consistency of previous structural and functional research in adolescent AB, we performed a systematic literature review and two coordinate-based activation likelihood estimation meta-analyses on eight VBM and nine functional neuroimaging studies in a total of 783 participants (408 [224AB/184 controls] and 375 [215 AB/160 controls] for structural and functional analysis respectively). We found 19 structural and eight functional foci of significant alterations in adolescents with AB, mainly located within the emotion processing and regulation network (including orbitofrontal, dorsomedial prefrontal and limbic cortex). A subsequent conjunction analysis revealed that functional and structural alterations co-localize in right dorsomedial prefrontal cortex and left insula. Our results are in line with meta-analytic work as well as structural, functional and connectivity findings to date, all of which make a strong point for the involvement of a network of brain areas responsible for emotion processing and regulation, which is disrupted in AB. Increased knowledge about the behavioural and neuronal underpinnings of AB is crucial for the development of novel and implementation of existing treatment strategies. Longitudinal research studies will have to show whether the observed alterations are a result or primary cause of the phenotypic characteristics in AB.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号