首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   134篇
  免费   12篇
  2021年   1篇
  2020年   1篇
  2019年   4篇
  2016年   3篇
  2015年   6篇
  2014年   4篇
  2013年   11篇
  2012年   3篇
  2011年   9篇
  2010年   5篇
  2009年   6篇
  2008年   11篇
  2007年   8篇
  2006年   6篇
  2005年   6篇
  2004年   4篇
  2003年   3篇
  2002年   5篇
  2001年   6篇
  2000年   4篇
  1999年   2篇
  1998年   3篇
  1997年   1篇
  1996年   3篇
  1994年   2篇
  1993年   2篇
  1991年   1篇
  1990年   3篇
  1988年   3篇
  1987年   3篇
  1986年   2篇
  1985年   2篇
  1981年   1篇
  1980年   1篇
  1978年   1篇
  1977年   2篇
  1975年   1篇
  1969年   2篇
  1968年   1篇
  1967年   1篇
  1966年   2篇
  1949年   1篇
排序方式: 共有146条查询结果,搜索用时 234 毫秒
1.
Liver mitochondria from rats fed ethanol chronically demonstrated a 35% decrease in mitochondrial ATPase activity. Moreover, the ATPase activity was inhibited only 61% by addition of oligomycin. Treatment of mitochondria from ethanol-fed rats with the detergent, Lubrol-WX, caused the release of 36% of the F1 from the resulting inner membrane particles. In comparison, only 5% of the F1 was dissociated when control mitochondria were subjected to the Lubrol treatment. However, when the units of ATPase activity from the supernatant and particles obtained after Lubrol treatment were added together, their sums were equivalent in preparations from control and ethanol-fed animals. Moreover, polyacrylamide gel electrophoresis analyses indicated equal amounts of the alpha + beta subunits of F1 in mitochondria from control and ethanol-fed rats. Reconstitution experiments with urea particles and F1 prepared from both control and ethanol mitochondria revealed a decrease in oligomycin sensitivity which could be attributed to an alteration in the functioning of either the oligomycin sensitivity conferring protein or a membrane sector subunit that interacts with oligomycin. Analysis by reconstitution also demonstrated that there were no ethanol-elicited alterations in the properties of the F1 portion of the ATP synthase complex. These observations indicate that the activity of the ATP synthase complex is altered significantly by ethanol-elicited changes in the functioning of those polypeptides involved in modulating both oligomycin sensitivity and the association of F1 with membrane sector subunits.  相似文献   
2.
Fifteen restriction sites were mapped to the 28S ribosomal RNA gene of individuals representing 54 species of frogs, two species of salamanders, a caecilian, and a lungfish. Eight of these sites were present in all species examined, and two were found in all but one species. Alignment of these conserved restriction sites revealed, among anuran 28S rRNA genes, five regions of major length variation that correspond to four of 12 previously identified divergent domains of this gene. One of the divergent domains (DD8) consists of two regions of length variation separated by a short segment that is conserved at least throughout tetrapods. Most of the insertions, deletions, and restriction-site variations identified in the 28S gene will require sequence-level analysis for a detailed reconstruction of their history. However, an insertion in DD9 that is coextensive with frogs in the suborder Neobatrachia, a BstEII site that is limited to representatives of two leptodactylid subfamilies, and a deletion in DD10 that is found only in three ranoid genera are probably synapomorphies.   相似文献   
3.
To investigate the mechanism by which complex membrane proteins achieve their correct transmembrane orientation, we examined in detail the hepatitis B surface antigen for sequences which determine its membrane topology. The results demonstrated the presence of at least two kinds of topogenic elements: an N-terminal uncleaved signal sequence and an internal element containing both signal and stop-transfer function. Fusion of reporter groups to either end of the protein suggested that both termini are translocated across the membrane bilayer. We propose that this topology is generated by the conjoint action of both elements and involves a specifically oriented membrane insertion event mediated by the internal sequence. The functional properties of each element can be instructively compared with those of simpler membrane proteins and may provide insight into the generation of other complex protein topologies.  相似文献   
4.
Force development in smooth muscle, as in skeletal muscle, is believed to reflect recruitment of force-generating myosin cross-bridges. However, little is known about the events underlying cross-bridge recruitment as the muscle cell approaches peak isometric force and then enters a period of tension maintenance. In the present studies on single smooth muscle cells isolated from the toad (Bufo marinus) stomach muscularis, active muscle stiffness, calculated from the force response to small sinusoidal length changes (0.5% cell length, 250 Hz), was utilized to estimate the relative number of attached cross-bridges. By comparing stiffness during initial force development to stiffness during force redevelopment immediately after a quick release imposed at peak force, we propose that the instantaneous active stiffness of the cell reflects both a linearly elastic cross-bridge element having 1.5 times the compliance of the cross-bridge in frog skeletal muscle and a series elastic component having an exponential length-force relationship. At the onset of force development, the ratio of stiffness to force was 2.5 times greater than at peak isometric force. These data suggest that, upon activation, cross-bridges attach in at least two states (i.e., low-force-producing and high-force-producing) and redistribute to a steady state distribution at peak isometric force. The possibility that the cross-bridge cycling rate was modulated with time was also investigated by analyzing the time course of tension recovery to small, rapid step length changes (0.5% cell length in 2.5 ms) imposed during initial force development, at peak force, and after 15 s of tension maintenance. The rate of tension recovery slowed continuously throughout force development following activation and slowed further as force was maintained. Our results suggest that the kinetics of force production in smooth muscle may involve a redistribution of cross-bridge populations between two attached states and that the average cycling rate of these cross-bridges becomes slower with time during contraction.  相似文献   
5.
A reconstitution procedure has been developed for the incorporation of the mitochondrial F0.F1-ATPase into the bilayer of egg phosphatidylcholine vesicles. The nonionic detergent, octylglucoside, egg phosphatidylcholine, and the lipid-deficient, oligomycin-sensitive F0.F1-ATPase (Serrano, R., Kanner, B., and Racker, E. (1976) J. Biol. Chem. 251, 2453-2461) were combined in a 4770:320:1 detergent/phospholipid/protein molar ratio and then centrifuged on a discontinuous sucrose gradient to isolate the F0.F1-phosphatidylcholine complex. The specific activity of the reconstituted F0.F1-ATPase was as high as 14.5 mumol/min/mg protein, whereas with no added lipid the activity ranged between 1.4 and 2.2 mumol/min/mg protein. This reconstituted preparation exhibited greater than 90% oligomycin sensitivity which demonstrated the intactness of the multisubunit enzyme complex. The phosphatidylcholine/protein molar ratio of the reconstituted F0.F1 was 250:1 with less than 0.4% of the added octylglucoside remaining. Titrations with both phosphatidylcholine and octylglucoside demonstrated that the specific activity and oligomycin sensitivity were highly dependent on the concentrations of both phospholipid and detergent in the original reconstitution mixture. Analysis of the reconstituted ATPase by electron microscopy demonstrated that the catalytic portion of the enzyme complex projected from the phospholipid bilayer with an orientation similar to that observed with submitochondrial particles. The F0.F1-phosphatidylcholine complex was able to trap inulin, which suggests a vesicular structure impermeable to macromolecules. The electrophoretic mobility of the complex was identical to that for liposomes of egg phosphatidylcholine alone. The reconstitution conditions utilized give rise to an enzyme-phospholipid complex with very low ionic charge that demonstrates high oligomycin-sensitive ATPase activity.  相似文献   
6.
Recent studies of mitochondrial DNA (mtDNA) variation in mammals and Drosophila have shown an excess of amino acid variation within species (replacement polymorphism) relative to the number of silent and replacement differences fixed between species. To examine further this pattern of nonneutral mtDNA evolution, we present sequence data for the ND3 and ND5 genes from 59 lines of Drosophila melanogaster and 29 lines of D. simulans. Of interest are the frequency spectra of silent and replacement polymorphisms, and potential variation among genes and taxa in the departures from neutral expectations. The Drosophila ND3 and ND5 data show no significant excess of replacement polymorphism using the McDonald-Kreitman test. These data are in contrast to significant departures from neutrality for the ND3 gene in mammals and other genes in Drosophila mtDNA (cytochrome b and ATPase 6). Pooled across genes, however, both Drosophila and human mtDNA show very significant excesses of amino acid polymorphism. Silent polymorphisms at ND5 show a significantly higher variance in frequency than replacement polymorphisms, and the latter show a significant skew toward low frequencies (Tajima's D = -1.954). These patterns are interpreted in light of the nearly neutral theory where mildly deleterious amino acid haplotypes are observed as ephemeral variants within species but do not contribute to divergence. The patterns of polymorphism and divergence at charge-altering amino acid sites are presented for the Drosophila ND5 gene to examine the evolution of functionally distinct mutations. Excess charge-altering polymorphism is observed at the carboxyl terminal and excess charge-altering divergence is detected at the amino terminal. While the mildly deleterious model fits as a net effect in the evolution of nonrecombining mitochondrial genomes, these data suggest that opposing evolutionary pressures may act on different regions of mitochondrial genes and genomes.   相似文献   
7.
Four collections of human X-specific YACs, derived from human cells containing supernumerary X chromosomes or from somatic cell hybrids containing only X human DNA were characterized. In each collection, 80-85% of YAC strains contained a single X YAC. Five thousand YACs from the various libraries were sized, and cocloning was assessed in subsets by the fraction of YAC insert-ends with non-X sequences. Cocloning was substantial, ranging up to 50% for different collections; and in agreement with previous indications, in all libraries the larger the YACs, the higher the level of cocloning. In libraries made from human-hamster hybrid cells, expected numbers of clones were recovered by STS-based screening; but unexpectedly, the two collections from cells with 4 or 5 X chromosomes yielded numbers of YACs corresponding to an apparent content of only about two X equivalents. Thus it is possible that the DNA of inactive X chromosomes is poorly cloned into YACs, speculatively perhaps because of its specialized chromatin structure.  相似文献   
8.
Motile spermatozoa from the golden hamster have been arrested by rapid freezing and then fixed with glutaraldehyde at low temperature after substitution with ethylene glycol. As far as can be judged, the flagellar waveforms thus stabilized are similar to those seen in living sperm; in contrast, fixation in glutaraldehyde, without prior freezing, induces agonal changes in flagellar conformation. The characteristics waveform after freeze substitution contains three bends. Approx. half of these flagella are entirely planar. The rest are three dimensional, with the third bend displaced in a regular way from the plane containing the proximal two bends. From the geometry of these flagella, it is concluded that the plane of action of a given bending cycle undergoes a clockwise twist (from a forward viewpoint) as the cycle is succeeded by new bending cycles. This "twisted plane" undulation is quite different from helical movement. The twisting seems to occur abruptly, between cycles, as if each bending cycle has a preferred plane of action. The mechanism underlying the twisting is uncertain. However, on the basis of the angular displacements between the preferred planes, and the findings from electron microscopy, the following idea is presented as a working hypothesis: that, if the most proximal plane of bending is topographically determined by peripheral doublet 1, then successive distal planes of action are influenced predominantly by doublets 2, 3, etc., in clockwise sequence. The merits and weaknesses of this hypothesis are discussed.  相似文献   
9.
10.
Many snake venoms are known for their antithrombotic activity. They contain components that specifically target different platelet-activating receptors such as the collagen-binding integrin α2β1 and the von Willebrand factor receptor GPIb. In a search for an α2β1 integrin-blocking component from the venom of the habu snake (Trimeresurus flavoviridis), we employed two independent purification protocols. First, we used the integrin α2A domain, a major collagen-binding domain, as bait for affinity purification of an α2β1 integrin-binding toxin from the crude venom. Second, in parallel, we used classical protein separation protocols and tested for α2β1 integrin-inhibiting capabilities by ELISA. Using both approaches, we identified flavocetin-A as an inhibitor of α2β1 integrin. Hitherto, flavocetin-A has been reported as a GPIb inhibitor. However, flavocetin-A inhibited collagen-induced platelet aggregation even after GPIb was blocked with other inhibitors. Moreover, flavocetin-A antagonized α2β1 integrin-mediated adhesion and migration of HT1080 human fibrosarcoma cells, which lack any GPIb, on collagen. Protein chemical analyses proved that flavocetin-A binds to α2β1 integrin and its α2A domain with high affinity and in a cooperative manner, which most likely is due to its quaternary structure. Kinetic measurements confirmed the formation of a strong complex between integrin and flavocetin-A, which dissociates very slowly. This study proves that flavocetin-A, which has long been known as a GPIb inhibitor, efficiently targets α2β1 integrin and thus blocks collagen-induced platelet activation. Moreover, our findings suggest that the separation of GPIb- and α2β1 integrin-blocking members within the C-type lectin-related protein family is less strict than previously assumed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号