首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   1篇
  2015年   1篇
  2009年   1篇
排序方式: 共有2条查询结果,搜索用时 46 毫秒
1
1.
Arabidopsis was grown in a 12, 8, 4 or 3 h photoperiod to investigate how metabolism and growth adjust to a decreased carbon supply. There was a progressive increase in the rate of starch synthesis, decrease in the rate of starch degradation, decrease of malate and fumarate, decrease of the protein content and decrease of the relative growth rate. Carbohydrate and amino acids levels at the end of the night did not change. Activities of enzymes involved in photosynthesis, starch and sucrose synthesis and inorganic nitrogen assimilation remained high, whereas five of eight enzymes from glycolysis and organic acid metabolism showed a significant decrease of activity on a protein basis. Glutamate dehydrogenase activity increased. In a 2 h photoperiod, the total protein content and most enzyme activities decreased strongly, starch synthesis was inhibited, and sugars and amino acids levels rose at the end of the night and growth was completely inhibited. The rate of starch degradation correlated with the protein content and the relative growth rate across all the photoperiod treatments. It is discussed how a close coordination of starch turnover, the protein content and growth allows Arabidopsis to avoid carbon starvation, even in very short photoperiods.  相似文献   
2.
Experiments were designed to compare the relationship between starch degradation and the use of carbon for maintenance and growth in Arabidopsis in source‐limited and sink‐limited conditions. It is known that starch degradation is regulated by the clock in source‐limited plants, which degrade their starch in a linear manner such that it is almost but not completely exhausted at dawn. We asked whether this response is maintained under an extreme carbon deficit. Arabidopsis was subjected to a sudden combination of a day of low irradiance, to decrease starch at dusk, and a warm night. Starch was degraded in a linear manner through the night, even though the plants became acutely carbon starved. We conclude that starch degradation is not increased to meet demand in carbon‐limited plants. This network property will allow stringent control of starch turnover in a fluctuating environment. In contrast, in sink‐limited plants, which do not completely mobilize their starch during the night, starch degradation was accelerated in warm nights to meet the increased demand for maintenance and growth. Across all conditions, the rate of growth at night depends on the rate of starch degradation, whereas the rate of maintenance respiration decreases only when starch degradation is very slow.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号