首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   1篇
  2021年   1篇
  2015年   2篇
  2014年   2篇
  2013年   3篇
  2012年   1篇
  2011年   1篇
  2010年   3篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2006年   3篇
  2005年   2篇
  2003年   1篇
  2002年   1篇
  1998年   1篇
  1960年   1篇
排序方式: 共有25条查询结果,搜索用时 15 毫秒
1.
The effect of cyanide, an apoptosis inducer, on pea leaf epidermal peels was investigated. Illumination stimulated the CN-induced destruction of guard cells (containing chloroplasts and mitochondria) but not of epidermal cells (containing mitochondria only). The process was prevented by antioxidants (-tocopherol, 2,5-di-tret-butyl-4-hydroxytoluene, and mannitol), by anaerobiosis, by the protein kinase C inhibitor staurosporine, and by cysteine and serine protease inhibitors. Electron acceptors (menadione, p-benzoquinone, diaminodurene, TMPD, DCPIP, and methyl viologen) suppressed CN-induced apoptosis of guard cells, but not epidermal cells. Methyl viologen had no influence on the removal of CN-induced nucleus destruction in guard cells under anaerobic conditions. The light activation of CN-induced apoptosis of guard cells was suppressed by DCMU (an inhibitor of the electron transfer in Photosystem II) and by DNP-INT (an antagonist of plastoquinol at the Qo site of the chloroplast cytochrome b 6 f complex). It is concluded that apoptosis initiation in guard cells depends on the simultaneous availability of two factors, ROS and reduced quinones of the electron transfer chain. The conditions for manifestation of programmed cell death in guard and epidermal cells of the pea leaf were significantly different.  相似文献   
2.
Cyanide is an apoptosis inducer in stoma guard cells from pea leaf epidermis. Unlike CN-, the uncoupler of oxidative and photosynthetic phosphorylation carbonyl cyanide m-chlorophenylhydrazone (CCCP), the combination of CCCP, 3-(3 ,4 -dichlorophenyl)-1,1-dimethylurea (DCMU), benzylhydroxamate (BH), myxothiazol, antimycin A, and a glycolysis inhibitor 2-deoxyglucose (DG) did not induce destruction of guard cell nuclei for 20 h of incubation of epidermal peels in the light. DCMU prevented the effect of CN- as a programmed cell death (PCD) inducer. CCCP, the combination of DCMU and CCCP, or the combination of DCMU, CCCP, BH, myxothiazol, antimycin A, and DG supplemented by CN- caused destruction of cell nuclei; the number of the cells lacking nuclei in this case was higher than with CN- alone. DG and CCCP caused cell destruction after longer incubation of the isolated epidermis - after 2 days and to a greater degree after 4 days. The effect of DG and CCCP was reduced by illumination. Cell destruction during long-term incubation was prevented by the combination of DG and CCCP. From data of electron microscopy, DCMU and dinitrophenyl ester of iodonitrothymol (DNP-INT) prevented apoptotic changes of the nuclear ultrastructure induced by CN-. The suppression of the destruction of the guard cell nuclei under combined action of DG and CCCP was apparently caused by switching of cell death from PCD to necrosis. Thus, the type of cell death - via apoptosis or necrosis - is controlled by the level of energy provision.  相似文献   
3.
Destruction of guard cell nuclei in epidermis isolated from leaves of pea, maize, sunflower, and haricot bean, as well as destruction of cell nuclei in leaves of the aquatic plants waterweed and eelgrass were induced by cyanide. Destruction of nuclei was strengthened by illumination, prevented by the antioxidant alpha-tocopherol and an electron acceptor N,N,N ,N -tetramethyl-p-phenylenediamine, and removed by quinacrine. Photosynthetic O2 evolution by the leaf slices of a C3 plant (pea), or a C4 plant (maize) was inhibited by CN- inactivating ribulose-1,5-bisphosphate carboxylase, and was renewed by subsequent addition of the electron acceptor p-benzoquinone.  相似文献   
4.
Chitosan, CN, or H2O2 caused the death of epidermal cells (EC) in the epidermis of pea leaves that was detected by monitoring the destruction of cell nuclei; chitosan induced chromatin condensation and marginalization followed by the destruction of EC nuclei and subsequent internucleosomal DNA fragmentation. Chitosan did not affect stoma guard cells (GC). Anaerobic conditions prevented the chitosan-induced destruction of EC nuclei. The antioxidants nitroblue tetrazolium or mannitol suppressed the effects of chitosan, H2O2, or chitosan + H2O2 on EC. H2O2 formation in EC and GC mitochondria that was determined from 2′,7′-dichlorofluorescein fluorescence was inhibited by CN and the protonophoric uncoupler carbonyl cyanide m-chlorophenylhydrazone but was stimulated by these agents in GC chloroplasts. The alternative oxidase inhibitors propyl gallate and salicylhydroxamate prevented chitosan- but not CN-induced destruction of EC nuclei; the plasma membrane NADPH oxidase inhibitors diphenylene iodonium and quinacrine abolished chitosan- but not CN-induced destruction of EC nuclei. The mitochondrial protein synthesis inhibitor lincomycin removed the destructive effect of chitosan or H2O2 on EC nuclei. The effect of cycloheximide, an inhibitor of protein synthesis in the cytoplasm, was insignificant; however, it was enhanced if cycloheximide was added in combination with lincomycin. The autophagy inhibitor 3-methyladenine removed the chitosan effect but exerted no influence on the effect of H2O2 as an inducer of EC death. The internucleosome DNA fragmentation in conjunction with the data on the 3-methyladenine effect provides evidence that chitosan induces programmed cell death that follows a combined scenario including apoptosis and autophagy. Based on the results of an inhibitor assay, chitosan-induced EC death involves reactive oxygen species generated by the NADPH oxidase of the plasma membrane.  相似文献   
5.
6.
A population of Stratiomys japonica, a species belonging to the family Stratiomyidae (Diptera), common name ‘soldier flies’, occurs in a hot volcanic spring, which is apparently among the most inhospitable environments for animals because of chemical and thermal conditions. Larvae of this species, which naturally often experience temperatures more than 40 °C, have constitutively high concentrations of the normally inducible heat-shock protein Hsp70, but very low level of corresponding mRNA. Larvae of three other species of the same family, Stratiomys singularior, Nemotelus bipunctatus and Oxycera pardalina, are confined to different type semi-aquatic habitats with contrasting thermal regime. However, all of them shared the same pattern of Hsp70 expression. Interestingly, heat-shock treatment of S. japonica larvae activates heat-shock factor and significantly induces Hsp70 synthesis, whereas larvae of O. pardalina, a species from constant cold environment, produce significantly less Hsp70 in response to heat shock. Adults of the four species also exhibit lower, but detectable levels of Hsp70 without heat shock. Larvae of all species studied have very high tolerance to temperature stress in comparison with other Diptera species investigated, probably representing an inherent adaptive feature of all Stratiomyidae enabling successful colonization of highly variable and extreme habitats.  相似文献   
7.
Plastoquinone or its methylated form covalently bound to the membrane-penetrating decyltriphenylphosphonium cation (SkQ1 and SkQ3) retarded the senescence of Arabidopsis thaliana rosette leaves and their death. Dodecyltriphenylphosphonium (C12TPP+) had a similar effect. Much like SkQ1, C12TPP+ prevented production of reactive oxygen species (ROS) measured by the fluorescence of 2′,7′-dichlorofluorescein in mitochondria of the plant cells. SkQ1 augmented the length of the vegetation period and the common and productive tillering, improved the crop structure and the productivity of the wheat Triticum aestivum. These results indicate that the tested compounds act as antioxidants, that ROS participate in aging and death of A. thaliana leaves, and wheat tillering is increased and the crop structure is improved by SkQ1.  相似文献   
8.
9.
10.
The phylogeny of selected genera from four subfamilies of fungus gnats (Diptera: Mycetophilidae) – Manotinae, Leiinae, Sciophilinae and Gnoristinae (including Metanepsiini) – is reconstructed based on the combined analysis of five mitochondrial (12S, 16S, COI, COII, cytB) and two nuclear (28S, ITS2) gene markers. Results of the different analyses all support Manotinae as a monophyletic group, with Leiinae as the sister group. Allactoneura DeMeijere is nested in the monophyletic and strongly supported clade of Leiinae. The tribe Metanepsiini is revealed as paraphyletic and the genera Metanepsia Edwards and Chalastonepsia Søli do not appear to be closely related. The genera Docosia Winnertz, Ectrepesthoneura Enderlein, Novakia Strobl and Syntemna Winnertz were placed with a group of genera included traditionally in the Gnoristinae. The monophyly of Dziedzickia Johannsen and Phthinia Winnertz is not supported. The genera of Sciophilinae (excluding Paratinia Mik but including Eudicrana Loew) form a monophyletic group in the Bayesian model.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号