首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28篇
  免费   0篇
  国内免费   2篇
  2011年   1篇
  2010年   6篇
  2009年   2篇
  2008年   1篇
  2007年   1篇
  2005年   3篇
  2004年   2篇
  2002年   2篇
  2001年   1篇
  1999年   1篇
  1998年   1篇
  1997年   2篇
  1994年   1篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1974年   1篇
  1973年   1篇
排序方式: 共有30条查询结果,搜索用时 406 毫秒
1.
Terminology of inflorescence diversity has often been used in a confusing way in the literature, partly because it was based on uncritical and outdated definitions. In particular, the terms cyme, thyrse, and panicle have been misused. Although a more critical classification worked out by several authors is available, it is unfortunately not in general use because most of the relevant publications are written in German. In addition, some terms have not been used in the same way by morphologists and developmental geneticists. The present review attempts to remedy the situation with a simple outline of a classification based on: (i) different branching patterns; (ii) differential elongation of axes of different orders; and (iii) repetition of basic ramification patterns in different ways. Racemose and cymose branching are two extreme patterns; the former with limitation of axial orders to two, the second with limitation of lateral axes of each order to two. In a branching system, a sequence of racemose → cymose and, within the cyme, of dichasial → monochasial is common, but the reverse sequence generally does not occur. Systematic and evolutionary aspects of inflorescences are briefly discussed. Branching patterns are often stable in larger clades.Infiorescences of mutants studied in developmental genetic studies are mainly altered in flower or branch numbers or relative branch length, but not in branching patterns. This is also a contribution towards the goal of a unified terminology for the different fields of biology dealing with inflorescences.  相似文献   
2.
Reproductive structures and systematics of Buxaceae   总被引:3,自引:0,他引:3  
Buxaceae belong to a grade of families near the base of eudicots. Flowers of these families are characterized by a variable number and arrangement of floral organs. In this study, the anthetic structure of the gynoecium and androecium of representatives of all genera of Buxaceae were comparatively studied, and observations on the flowering processes and pollination biology were made. Styloceras and Notobuxus were studied in detail for the first time. Various features of the morphological analysis support our earlier molecular phylogenetic study. Shared reproductive characters among Sarcococca , Pachysandra and Styloceras are the occurrence of two (rarely three) carpels, the lack of interstylar nectaries, a micropyle formed by both integuments, attractive stamens in male flowers, and fleshy fruits. In addition, Styloceras and Pachysandra share a secondary partition in the ovary. Notobuxus does not seem to be clearly distinct from Buxus . Both have a similar inflorescence and perianth structure; female flowers have three carpels, interstylar nectaries, micropyles formed by the inner integument, rudimentary arils, and they develop into capsular fruits; in male flowers stamens are sessile and the central pistillode is lacking in some species. Thus, it is questionable to justify a separation of Buxus and Notobuxus at genus level. The results further strongly support the placement of Buxaceae among basal eudicots.  © The Linnean Society of London, Botanical Journal of the Linnean Society , 2002, 140 , 193–228.  相似文献   
3.
Floral structure of all putative families of Crossosomatales as suggested by molecular studies was comparatively studied. The seven comprise Crossosomataceae, Stachyuraceae, Staphyleaceae, Aphloiaceae, Geissolomataceae, Ixerbaceae, and Strasburgeriaceae. The entire clade (1) is highly supported by floral structure, also the clades (in sequence of diminishing structural support): Ixerbaceae/Strasburgeriaceae (2), Geissolomataceae/Ixerbaceae/Strasburgeriaceae (3), Aphloiaceae/Geissolomataceae/Ixerbaceae/Strasburgeriaceae (4), and Crossosomataceae/Stachyuraceae/Staphyleaceae (5). Among the prominent floral features of Crossosomatales (1) are solitary flowers, presence of a floral cup, imbricate sepals with outermost smaller than inner, pollen grains with horizontally extended endoapertures, shortly stalked gynoecium, postgenitally united carpel tips forming a compitum, stigmatic papillae two‐ or more‐cellular, ovary locules tapering upwards, long integuments forming zigzag micropyles, cell clusters with bundles of long yellow crystals, mucilage cells, seeds with smooth, sclerified testa and without a differentiated tegmen. Clade (2) is characterized by large flowers, petals forming a tight, pointed cone in bud, stamens with long, stout filaments and sagittate anthers, streamlined, conical gynoecium, antitropous ovules, rudimentary aril, lignified, unicellular, T‐shaped hairs and idioblasts with striate mucilaginous cell walls. Clade (3) is characterized by alternisepalous carpels, punctiform stigma formed by postgenitally united and twisted carpel tips, synascidiate ovary, only one or two pendant ovules per carpel, nectary recesses between androecium and gynoecium. Clade (4) is characterized by pronounced ‘pollen buds’. Clade (5) is characterized by polygamous or functionally unisexual flowers, x‐shaped anthers, free and follicular carpels (not in Stachyuraceae). Crossosomataceae and Aphloiaceae, although not retrieved as a clade in molecular studies, share several special floral features: polystemonous androecium; basifixed anthers without a connective protrusion; stigma with two more or less decurrent crests; camplyotropous ovules and reniform seeds; simple, disc‐shaped nectaries and absence of hairs. © 2005 The Linnean Society of London, Botanical Journal of the Linnean Society, 2005, 147 , 1–46.  相似文献   
4.
The indehiscent fruitlets of the apparently basalmost extant angiosperm, Amborella trichopoda, have a pericarp that is differentiated into five zones, a thin one‐cell‐layered skin (exocarp), a thick fleshy zone of 25–35 cell layers (outer mesocarp), a thick, large‐celled sclerenchymatous zone (unlignified) of 6–18 cell layers (middle mesocarp), a single cell layer with thin‐walled (silicified?) cells (inner mesocarp), and a 2–4‐cell‐layered, small‐celled sclerenchymatous zone (unlignified) derived from the inner epidermis (endocarp). The border between inner and outer mesocarp is not even but the inner mesocarp forms a network of ridges and pits; the ridges support the vascular bundles, which are situated in the outer mesocarp. In accordance with previous observations by Bailey & Swamy, no ethereal oil cells were observed in the pericarp; however, lysigenous cavities as mentioned by these authors are also lacking; they seem to be an artefact caused by re‐expanding dried fruits. The seed coat is not sclerified. The fruitlets of Amborella differ from externally similar fruits or fruitlets in other basal angiosperms, such as Austrobaileyales or Laurales, in their histology. © 2005 The Linnean Society of London, Botanical Journal of the Linnean Society, 2005, 148 , 265–274.  相似文献   
5.
Floral morphology, anatomy and histology in the newly circumscribed order Celastrales, comprising Celastraceae, Parnassiaceae and Lepidobotryaceae are studied comparatively. Several genera of Celastraceae and Lepidobotrys (Lepidobotryaceae) were studied for the first time in this respect. Celastraceae are well supported as a group by floral structure (including genera that were in separate families in earlier classifications); they have dorsally bulged‐up locules (and thus apical septa) and contain oxalate druses in their floral tissues. The group of Celastraceae and Parnassiaceae is also well supported. They share completely syncarpous gynoecia with commissural stigmatic lobes (and strong concomitant development of the commissural vascular bundles but weak median carpel bundles), only weakly crassinucellar or incompletely tenuinucellar ovules with an endothelium, partly fringed sepals and petals, protandry in bisexual flowers combined with herkogamy by the movement of stamens and anther abscission, and stamens fused with the ovary. In contrast, Lepidobotryaceae are more distant from the other two families, sharing only a handful of features with Celastraceae (not Parnassiaceae), such as pseudohermaphroditic flowers, united stamen bases forming a collar around the gynoecium and seeds with a conspicuous aril. However, all three families together are also somewhat supported as a group and share petals that are not retarded in late floral bud development, 3‐carpellate gynoecia, ventral slits of carpels closed by long interlocking epidermal cells and pollen tube transmitting tissue encompassing several cell layers, both integuments usually more than two cell layers thick, and only weak or lacking floral indumentum. In some molecular analyses Celastrales form an unsupported clade with Malpighiales and Oxalidales. This association is supported by floral structure, especially between Celastrales and Malpighiales. Among Celastrales, Lepidobotryaceae especially share special features with Malpighiales, including a diplostemonous androecium with ten fertile stamens, epitropous ovules with an obturator and strong vascularization around the chalaza. © 2005 The Linnean Society of London, Botanical Journal of the Linnean Society, 2005, 149 , 129–194.  相似文献   
6.
Floral structure is compared in Pelagodoxa and Sommieria (Arecaceae, Arecoideae). Male flowers have three free, imbricate sepals, three basally congenitally united and apically valvate petals, and six stamens. Anthers are dorsifixed and dehiscence introrse. The sterile gynoecium is tricarpellate. Female flowers have three free, imbricate sepals and three free, imbricate petals, which are slightly fused with the sepals at the base. Four to six staminodes are congenitally united at the base and fused with the ovary for a short distance. The gynoecium is syncarpous. Carpels are almost equal in early development; later the gynoecium becomes pseudomonomerous. The three stigmatic branches are equally developed, apical and sessile. The carpels are (syn-)ascidiate up to the level of the placenta and (sym-)plicate above. Each carpel has one ovule, in the sterile carpels it is aborted at anthesis. The fertile ovule is erect up to anthesis and pendant afterwards because of the bulging out of the ovary. Pollen tube transmitting tracts (PTTT) encompass the secretory epidermis of the ventral slits of each carpel. Floral structure in Pelagodoxa and Sommieria supports the sister group relationship between the two genera suggested in recent molecular phylogenies and reflects their close relationships to a major clade of pseudomonomerous arecoid palms from the Indo-Pacific region.  © 2004 The Linnean Society of London, Botanical Journal of the Linnean Society , 2004, 146 , 27–39.  相似文献   
7.
ENDRESS  A. G. 《Annals of botany》1974,38(4):877-878
Germination of the spores of Ceratopteris thalictroides wasexamined by light and scanning electron microscopy. Spores germinateby scission of the spore coat at the trilete markings. The initialcell divisions produce a proximal prothallial initial with rhizoidsthat are distal and lateral. This represents a reverse orientationof the more common situation in ferns. Evidence is presentedthat rhizoid initials divide with the most lateral of the daughtercells differentiating into a rhizoid. Rhizoids are long andunbranched. The uniseriate protonema is transient with bi-dimensionalgrowth established quite early. About a week following germination,the gametophyte is broad at the basal region and narrow at theanterior region. Further growth of cells in the basal regionis by elongation and the anterior region broadens to producean elongate-ovate gametophyte.  相似文献   
8.
The structure and late development of the flowers of the South‐East Asian bee‐pollinated palm Licuala peltata are described with special focus on the architecture of the unusual labyrinthine nectaries. The nectaries are derived from septal nectaries by extensive convolution of the carpel flank surfaces below the ovary throughout the inner floral base, thus also encompassing the inner surface of the corolla–androecium tube. A comparison with septal nectaries elsewhere in Arecaceae and with labyrinthine nectaries in other monocots shows that labyrinthine nectaries situated below the ovary, as described here, are not known from any other palms, but are similar to those of a few Bromeliaceae and, less strongly convoluted, some Haemodoraceae and Xanthorrhoeaceae. In addition, the substantial participation of parts other than the gynoecium in the nectary architecture of Licuala appears unique at the level of monocots. © 2009 The Linnean Society of London, Botanical Journal of the Linnean Society, 2009, 161 , 66–77.  相似文献   
9.
Over the past 25 years, discoveries of Early Cretaceous fossil flowers, often associated with pollen and sometimes with vegetative parts, have revolutionized our understanding of the morphology and diversity of early angiosperms. However, few of these fossils have been integrated into the increasingly robust phylogeny of living angiosperms based primarily on molecular data. To remedy this situation, we have used a morphological dataset for living basal angiosperms (including basal eudicots and monocots) to assess the most parsimonious positions of early angiosperm fossils on cladograms of Recent plants, using constraint trees that represent the current range of hypotheses on higher-level relationships, and concentrating on Magnoliidae (the clade including Magnoliales, Laurales, Canellales, and Piperales) and eudicots. In magnoliids, our results confirm proposed relationships of Archaeanthus (latest Albian?) to Magnoliaceae, Endressinia (late Aptian) to Magnoliales (the clade comprising Degeneria, Galbulimima, Eupomatia, and Annonaceae), and Walkeripollis pollen tetrads (late Barremian?) to Win-teraceae, but they indicate that Mauldinia (early Cenomanian) was sister to both Lauraceae and Hernandiaceae rather than to Lauraceae alone. Among middle Albian to early Cenomanian eudicots, we confirm relationships of Nelumbites to Nelumbo, platanoid inflorescences and Sapindopsis to Platanaceae, and Spanomera to Buxaceae. With the possible exception of Archaeanthus, these fossils are apparently not crown group members of living families but rather stem relatives of one or more families.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号