首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   88篇
  免费   4篇
  92篇
  2017年   2篇
  2016年   1篇
  2015年   2篇
  2014年   1篇
  2013年   9篇
  2012年   12篇
  2011年   12篇
  2010年   18篇
  2009年   15篇
  2008年   5篇
  2005年   1篇
  1997年   1篇
  1996年   1篇
  1993年   1篇
  1985年   1篇
  1984年   1篇
  1977年   1篇
  1975年   1篇
  1972年   1篇
  1958年   1篇
  1957年   1篇
  1954年   1篇
  1950年   2篇
  1949年   1篇
排序方式: 共有92条查询结果,搜索用时 10 毫秒
1.
Characterizing the architecture of bipartite networks is increasingly used as a framework to study biotic interactions within their ecological context and to assess the extent to which evolutionary constraint shape them. Orchid mycorrhizal symbioses are particularly interesting as they are viewed as more beneficial for plants than for fungi, a situation expected to result in an asymmetry of biological constraint. This study addressed the architecture and phylogenetic constraint in these associations in tropical context. We identified a bipartite network including 73 orchid species and 95 taxonomic units of mycorrhizal fungi across the natural habitats of Reunion Island. Unlike some recent evidence for nestedness in mycorrhizal symbioses, we found a highly modular architecture that largely reflected an ecological barrier between epiphytic and terrestrial subnetworks. By testing for phylogenetic signal, the overall signal was stronger for both partners in the epiphytic subnetwork. Moreover, in the subnetwork of epiphytic angraecoid orchids, the signal in orchid phylogeny was stronger than the signal in fungal phylogeny. Epiphytic associations are therefore more conservative and may co‐evolve more than terrestrial ones. We suggest that such tighter phylogenetic specialization may have been driven by stressful life conditions in the epiphytic niches. In addition to paralleling recent insights into mycorrhizal networks, this study furthermore provides support for epiphytism as a major factor affecting ecological assemblage and evolutionary constraint in tropical mycorrhizal symbioses.  相似文献   
2.
Croes, A. F., Creemers-Molenaar, T., van den Ende, G., Kemp,A. and Barendse, G. W. M. 1985. Tissue age as an endogenousfactor controlling in vitro bud formation on explants from theinflorescence of Nicotiana tabacum L.—J. exp. Bot. 36:1771–1779. The in vitro formation of generative buds was studied on explantsfrom flower and fruit stalks and from internodes of the floralramifications of tobacco. A floral gradient was found to existalong the axis of the branch. The gradient concerns the numberof flower buds formed in vitro and is present in both typesof tissues. The number of flower buds is greater on tissuesfrom the apical than from the basal portion of the branch. Thecapacity to generate these buds is largely determined by tissueage at the moment of the excision. Consequently, the gradientmoves along the axis during the outgrowth of the inflorescence. The alternative possibility that some apex-derived stimuluspredetermines the morphogenetic capacity of the tissue priorto excision is excluded by the observation that the gradientremains virtually unaltered if the apex is removed one weekbefore the onset of culturing. Auxin affects the floral gradient Increasing the auxin concentrationin internode tissue culture causes a steeper gradient of flowerbud generation by almost completely abolishing bud formationon older tissues. Key words: Auxin, flower buds, gradient, tissue culture, tobacco  相似文献   
3.
The dynamics and fate of terrestrial organic matter (OM) under elevated atmospheric CO2 and nitrogen (N) fertilization are important aspects of long‐term carbon sequestration. Despite numerous studies, questions still remain as to whether the chemical composition of OM may alter with these environmental changes. In this study, we employed molecular‐level methods to investigate the composition and degradation of various OM components in the forest floor (O horizon) and mineral soil (0–15 cm) from the Duke forest free air CO2 enrichment (FACE) experiment. We measured microbial responses to elevated CO2 and N fertilization in the mineral soil using phospholipid fatty acid (PLFA) profiles. Increased fresh carbon inputs into the forest floor under elevated CO2 were observed at the molecular‐level by two degradation parameters of plant‐derived steroids and cutin‐derived compounds. The ratios of fungal to bacterial PLFAs and Gram‐negative to Gram‐positive bacterial PLFAs decreased in the mineral soil with N fertilization, indicating an altered soil microbial community composition. Moreover, the acid to aldehyde ratios of lignin‐derived phenols increased with N fertilization, suggesting enhanced lignin degradation in the mineral soil. 1H nuclear magnetic resonance (NMR) spectra of soil humic substances revealed an enrichment of leaf‐derived alkyl structures with both elevated CO2 and N fertilization. We suggest that microbial decomposition of SOM constituents such as lignin and hydrolysable lipids was promoted under both elevated CO2 and N fertilization, which led to the enrichment of plant‐derived recalcitrant structures (such as alkyl carbon) in the soil.  相似文献   
4.
The location of major quantitative trait loci (QTL) contributing to stem and leaf [Na+] and [K+] was previously reported in chromosome 7 using two connected populations of recombinant inbred lines (RILs) of tomato. HKT1;1 and HKT1;2, two tomato Na+‐selective class I‐HKT transporters, were found to be closely linked, where the maximum logarithm of odds (LOD) score for these QTLs located. When a chromosome 7 linkage map based on 278 single‐nucleotide polymorphisms (SNPs) was used, the maximum LOD score position was only 35 kb from HKT1;1 and HKT1;2. Their expression patterns and phenotypic effects were further investigated in two near‐isogenic lines (NILs): 157‐14 (double homozygote for the cheesmaniae alleles) and 157‐17 (double homozygote for the lycopersicum alleles). The expression pattern for the HKT1;1 and HKT1;2 alleles was complex, possibly because of differences in their promoter sequences. High salinity had very little effect on root dry and fresh weight and consequently on the plant dry weight of NIL 157‐14 in comparison with 157‐17. A significant difference between NILs was also found for [K+] and the [Na+]/[K+] ratio in leaf and stem but not for [Na+] arising a disagreement with the corresponding RIL population. Their association with leaf [Na+] and salt tolerance in tomato is also discussed.  相似文献   
5.
Many bird species start laying their eggs earlier in response to increasing spring temperatures, but the causes of variation between and within species have not been fully explained. Moreover, synchronization of the nestling period with the food supply not only depends on first‐egg dates but also on additional reproductive parameters including laying interruptions, incubation time and nestling growth rate. We studied the breeding cycle of two sympatric and closely related species, the blue tit Cyanistes caeruleus and the great tit Parus major in a rich oak‐beech forest, and found that both advanced their mean first‐egg dates by 11–12 days over the last three decades. In addition, the time from first egg to fledging has shortened by 2–3 days, through a decrease in laying interruptions, incubation time (not statistically significant) and nestling development time. This decrease is correlated with a gradual increase of temperatures during laying, suggesting a major effect of the reduction in laying interruptions. In both species, the occurrence of second clutches has strongly decreased over time. As a consequence, the average time of fledging (all broods combined) has advanced by 15.4 and 18.6 days for blue and great tits, respectively, and variance in fledging dates has decreased by 70–75%. Indirect estimates of the food peak suggest that both species have maintained synchronization with the food supply. We found consistent selection for large clutch size, early laying and short nest time (laying to fledging), but no consistent changes in selection over time. Analyses of within‐individual variation show that most of the change can be explained by individual plasticity in laying date, fledging date and nest time. This study highlights the importance of studying all components of the reproductive cycle, including second clutches, in order to assess how natural populations respond to climate change.  相似文献   
6.
Deserts shrubs are well known to facilitate vegetation aggregation, mostly through seed trapping, and stress amelioration during and after plant establishment. Because vegetation aggregation effects are a by‐product of shrub presence, beneficiary species may not only be native, but also exotic. However, despite the high risk that exotic invasive species pose to ecosystem services, little is known of the role of desert shrubs on plant invasions. We assessed the influence of two shrub species on the non‐dormant soil seed bank (i.e. the number of seeds that readily germinate with sufficient water availability) of an invasive annual grass (Schismus barbatus) and of coexisting native species in a central‐northern Monte Desert (Argentina). Soil samples were collected beneath the canopies of two dominant shrub species (Bulnesia retama and Larrea divaricata) and in open spaces (i.e. intercanopies) in May 2001. Overall, the density of germinated seedlings of Schismus and that of the native species were negatively associated across microsite types. Schismus density was similar to that of all native species pooled together (mostly annuals), and was highest in Larrea samples (with no significant differences between Bulnesia and intercanopies). On the contrary, the density of all native species pooled together was highest in Bulnesia samples. Our results suggest that shrubs may contribute to plant invasions in our study system but, most importantly, they further illustrate that this influence can be species specific. Further research is needed to assess the relative importance of in situ seed production (and survival) and seed redistribution on soil seed bank spatial patterns.  相似文献   
7.
Summary

In Anastrepha sp.2 aff. fraterculus, the egg-cell harbours a large population of endosymbionts. The bacteria were identified as belonging to genus Wolbachia by PCR assay using primers of the ftsZ gene followed by sequencing of the amplified band. Newly deposited eggs stained in toto by Hoechst show that the bacteria are unevenly dispersed throughout the egg-cell, with a higher accumulation at the posterior pole, and that the degree of infestation varies from egg to egg. Analysis by transmission electron microscopy shows that bacteria are present in the female germ line of embryonic and larval stages, as well as in the different cell types of the ovaries at the adult stage. Mature ova within the follicles harbour a large population of the symbionts. The results indicate the existence of a transovarian transmission of the endosymbionts in this fly.  相似文献   
8.
The differentiation from early spermatid to spermatozoon is described with special emphasis on the formation of the helix of chromatin and mitochondrial junctions. The role of microtubules in morphogenesis is discussed.

New observations on the role of the recently described spermatheca are presented; phagocytosis and digestion of spermatozoa are proven, and the various origins of the sperm found in the spermatheca are specified.  相似文献   
9.
The new stick insect family Gallophasmatidae, based on Gallophasma longipalpis gen. et sp.n. , from the Earliest Eocene French amber has a pattern of tegmina venation typical of Archaeorthoptera, also present in at least some Mesozoic ‘Phasmatodea’. On the other hand, Gallophasma displays in its body anatomy some apomorphies of the extant Euphasmatodea, e.g. fusion of metatergum and abdominal tergum 1, correlated with the reduction of abdominal sternum 1 to lateral triangular sclerites. A unique autapomorphy of Gallophasma is the presence of annulated and apparently multi‐segmented or pseudo‐segmented cerci; all other Phasmatodea have one‐segmented cerci. The venation of the tegmina of Gallophasma differs from that of extant winged Phasmatodea in the plesiomorphic absence of a knob‐like dorsal eversion. This and other differences in the wing venation between extant and extinct Phasmatodea might have been caused by the loss of wings at some point in the evolutionary history of the order and their secondary gain in a subclade of the extant phasmids.  相似文献   
10.
All bryophytes evolved desiccation tolerance (DT) mechanisms during the invasion of terrestrial habitats by early land plants. Are these DT mechanisms still present in bryophytes that colonize aquatic habitats? The aquatic bryophyte Fontinalis antipyretica Hedw. was subjected to two drying regimes and alterations in protein profiles and sucrose accumulation during dehydration and rehydration were investigated. Results show that during fast dehydration, there is very little variation in protein profiles, and upon rehydration proteins are leaked. On the other hand, slow dehydration induces changes in both dehydration and rehydration protein profiles, being similar to the protein profiles displayed by the terrestrial bryophytes Physcomitrella patens (Hedw.) Bruch and Schimp. and, to what is comparable with Syntrichia ruralis (Hedw.) F. Weber and D. Mohr. During dehydration there was a reduction in proteins associated with photosynthesis and the cytoskeleton, and an associated accumulation of proteins involved in sugar metabolism and plant defence mechanisms. Upon rehydration, protein accumulation patterns return to control values for both photosynthesis and cytoskeleton whereas proteins associated with sugar metabolism and defence proteins remain high. The current results suggest that bryophytes from different ecological adaptations may share common DT mechanisms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号