首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   1篇
  2015年   1篇
  2012年   1篇
  2008年   2篇
  2007年   2篇
  2004年   1篇
  1975年   1篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
The key moment for efficiently and accurately diagnosing dementia occurs during the early stages. This is particularly true for Alzheimer's disease (AD). In this proof‐of‐concept study, we applied near infrared (NIR) Raman microspectroscopy of blood serum together with advanced multivariate statistics for the selective identification of AD. We analyzed data from 20 AD patients, 18 patients with other neurodegenerative dementias (OD) and 10 healthy control (HC) subjects. NIR Raman microspectroscopy differentiated patients with more than 95% sensitivity and specificity. We demonstrated the high discriminative power of artificial neural network (ANN) classification models, thus revealing the high potential of this developed methodology for the differential diagnosis of AD. Raman spectroscopic, blood‐based tests may aid clinical assessments for the effective and accurate differential diagnosis of AD, decrease the labor, time and cost of diagnosis, and be useful for screening patient populations for AD development and progression.

Multivariate data analysis of blood serum Raman spectra allows for the differentiation between patients with Alzheimer's disease, other types of dementia and healthy individuals.  相似文献   

2.
Analysis of the effect of several 1,4-DHP Ca(2+) channel antagonists on experimental and clinical diabetes shows that structurally similar Ca(2+) channel antagonists can exert opposite effects on Ca(2+) influx, glucose homeostasis and insulin secretion. The influence of the Ca(2+) channel antagonists on pancreatic beta cell functions is dependent on lipophilicity, interactions with the cell membrane lipid bilayer, with SNAREs protein complexes in cell and vesicle membranes, with intracellular receptors, bioavailability and time of elimination from several organs and the bloodstream. In the present work we studied the effect at several doses of new compounds synthesized in the Latvian Institute of Organic Synthesis on blood glucose levels in normal and STZ-induced diabetic rats. The compounds tested were: 1,4-DHP derivatives cerebrocrast (1), etaftoron (2), OSI-1190 (3), OSI-3802 (4), OSI-2954 (5) and known 1,4-DHP derivatives: niludipine (6), nimodipine (7) and nicardipine (8) which possess different lipophilicities. Analysis of the structure-function relationships of the effect of 1,4-DHP derivatives on glucose metabolism showed that cerebrocrast could evoke qualitative differences in activity. Insertion of an OCHF(2) group in position 2 of the 4-phenylsubstituent and propoxyethylgroup R in ester moieties in positions 3 and 5 of the DHP structure, as well as an increase in the number of carbon atoms in the ester moiety, significantly modified the properties of the compound. Thereby cerebrocrast acquired high lipophilicity and membranotropic properties. Cerebrocrast, in a single administration at low doses (0.05 and 0.5 mg x kg(-1), p.o.), significantly decreased the plasma level of glucose in normal rats and in STZ-induced diabetic rats returned plasma glucose to basal levels. This effect was characterized by a slow onset and a powerful long-lasting influence on glucose metabolism, especially in STZ-induced diabetic rats.  相似文献   
3.
Type 2 diabetes is associated with obesity, insulin resistance, hyperglycemia, hyperphagia, polyuria, body weight gain, excessive secretion of glucocorticoids (GCs), thymus involution, adrenal gland hypertrophy, diabetic nephropathy, etc. We examined the effect of cerebrocrast, a new antidiabetic agent (synthesized in the Latvian Institute of Organic Synthesis), on body weight, food and water intake, urine output, and on changes of organ weight: that is, kidney, thymus, adrenal gland of normal rats. Cerebrocrast was administered at doses of 0.05 and 0.5 mg kg−1 per os (p.o.) once a day for three consecutive days, and its effects were observed from 3 to 27 days after the last administration. Cerebrocrast, during the experimental period, decreased body weight by an average of approximately 32.3%, food intake by about 10–15% at the beginning of the experiments and by 22.6% at the end of the experiments, especially at a dose of 0.5 mg kg−1. Water intake and urine output in comparison with controls were decreased. The daily food intake decreased about 1.0 and 2.1 g by administering single cerebrocrast doses of 0.05 and 0.5 mg kg−1 body weight (b.w.), respectively, but by administering for three consecutive days, food intake decreased by about 2.2 and 3.4 g, respectively. The weekly body weight gain decreased by administering a single dose of cerebrocrast by 2.61 and 2.51 g, respectively, and by triple administration it decreased by 4.36 and 3.07 g, respectively. Cerebrocrast has long‐lasting effects on these parameters and on thymus and adrenal gland weight. As cerebrocrast decreased glucose levels in normal and streptozotocin (STZ)‐induced diabetic rats, it also promoted glucose uptake by the brain, intensified insulin action and formation de novo of insulin receptors. We can conclude that cerebrocrast may regulate food intake and body weight through glucose sensing by proopiomelanocortin (POMC) neurons, that are involved in control of glucose homeostasis, stimulation of α‐melanocyte‐stimulating hormone (α‐MSH) secretion, activation of MC4‐Rs and inhibition of neuropeptide Y (NPY) in the ARC of the hypothalamus, affecting the kidney, and causing decreased urine output and water intake. Moreover, it could stimulate secretion of vasopressin. By administration of cerebrocrast thymus mass was increased, thereby preventing the action of GCs. As cerebrocrast inhibited L‐ and T‐type calcium channels, it can prevent vasoconstriction of kidney arterioles and aldosterone secretion that have significant roles in the development of hypertension and diabetic nephropathy. These properties of cerebrocrast are important for treatment of Type 2 diabetes and its consequent development of hypertension and diabetic nephropathy. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
4.
Diabetes mellitus (DM) is an important cardiovascular risk factor and is associated with abnormalities in endothelial and vascular smooth muscle cell function, evoked by chronic hyperglycemia and hyperlipidemia. Chronic insulin deficiency or resistance is marked by decreases in the intensity of glucose transport, glucose phosphorylation, and glucose oxidation, plus decreases in ATP levels in cardiac myocytes. It is important to search for new agents that promote glucose consumption in the heart and partially inhibit extensive fatty acid beta-oxidation observed in diabetic, ischemia. When the oxygen supply for myocardium is decreased, the heart accumulates potentially toxic intermediates of fatty acid beta-oxidation, that is, long-chain acylcarnitine and long-chain acyl-CoA metabolites. Exogenous glucose and heart glycogen become an important compensatory source of energy. Therefore we studied the effect of the antidiabetic 1,4-dihydropyridine compound cerebrocrast at concentrations from 10(-10) M to 10(-7) M on isolated rat hearts using the method of Langendorff, on physiological parameters and energy metabolism. Cerebrocrast at concentrations from 10(-10) M to 10(-7) M has a negative inotropic effect on the rat heart. It inhibits L-type Ca(2+)channels thereby diminishing the cellular Ca(2+) supply, reducing contractile activity, and oxygen consumption, that normally favors enhanced glucose uptake, metabolism, and production of high-energy phosphates (ATP content) in myocardium. Cerebrocrast decreases heart rate and left ventricular (LV) systolic pressure; at concentrations of 10(-10) M and 10(-9) M it evokes short-term vasodilatation of coronary arteries. Increase of ATP content in the myocytes induced by cerebrocrast has a ubiquitous role. It can preserve the integrity of the cell plasma membranes, maintain normal cellular function, and inhibit release of lactate dehydrogenase (LDH) from cells that is associated with diabetes and heart ischemia. Administration of cerebrocrast together with insulin shows that both compounds only slightly enhance glucose uptake in myocardium, but significantly normalize the rate of contraction and relaxation ( +/- dp/dt). The effect of insulin on coronary flow is more pronounced by administration of insulin together with cerebrocrast at a concentration of 10(-7) M. Cerebrocrast may promote a shift of glucose consumption from aerobic to anerobic conditions (through the negative inotropic properties), and may be very significant in prevention of cardiac ischemic episodes.  相似文献   
5.

Background

Idiopathic pulmonary fibrosis (IPF) is an adult-onset Idiopathic Interstitial Pneumonia (IIP) usually diagnosed between age 50 to 70 years. Individuals with Familial Pulmonary Fibrosis (FPF) have at least one affected first or second-degree relative and account for 0.5-20% of cases.

Methods

We ascertained and collected DNA samples from a large population-based cohort of IPF patients from Newfoundland, Canada. For each proband, a family history was documented and medical records were reviewed. Each proband was classified as familial (28 patients) or sporadic (50 patients) and all 78 probands were screened for variants in four highly penetrant, adult-onset PF genes (SFTPC, SFTPA2, TERT,TERC).

Results

Seventy-eight IPF probands were enrolled of whom 28 (35.9%) had a positive family history. These 28 familial patients led to the recruitment of an additional 49 affected relatives (total of 77 FPF patients). By age 60 years, 42% of the familial cohort had been diagnosed with PF compared with only 16% of the sporadic patient collection (χ2 = 8.77, p = 0.003). Mean age of diagnosis in the familial group was significantly younger than the sporadic group (61.4 years vs. 66.6 yrs, p = 0.012) with a wider age range of diagnosis (19–92 years compared with 47–82 years). Thirty-three of 77 (42.8%) FPF patients had a tissue diagnosis and all but five had usual interstitial pneumonia histology. Compared with other published case series, the familial IIP histologies were more homogeneous. Three of 28 familial probands (10.7%) and none of the 50 sporadic probands had pathogenic variants in the four genes tested. All three familial probands had mutations in TERT. Other phenotypes associated with telomerase deficiency were present in these families including cirrhosis, bone marrow hypoplasia and premature graying. Telomere length assays were performed on mutation carriers from two families and confirmed telomere-related deficiency.

Conclusion

The proportion of familial cases in our cohort is higher than any previously reported estimate and we suggest that this is due to the fact that Newfoundland cohort is ethnically homogeneous and drawn from a founder population. In our patient collection, diagnosis with IPF prior to age 45 years predicted familial disease. In two of the three TERT mutation families, the pedigree appearance is consistent with genetic anticipation. In the other 25 FPF families negative for mutations in known PF genes, we did not identify other telomerase associated medical problems (bone marrow dysfunction, cirrhosis) and we hypothesize that there are novel PF genes segregating in our population.  相似文献   
6.
Kihlman  B. A.  Kronborg  Dzintra 《Chromosoma》1975,52(1):1-10
Evolutionary loss of the Y chromosome has occurred in Climacia areolaris (Hagen) of the neuropteran family Sisyridae. The diploid set comprises 6 pairs of autosomes, plus 2 X chromosomes in the female and 1 X in the male. The Y is retained in Sisyra vicaria (Walker) of the same family: its chromosome number is 14 in both sexes including 2X chromosomes in the female and 1X plus Y in the male. Two alternative pathways for the segregation of the sex chromosomes-distance segregation and sex bivalent formation-co-exist in the latter species in a ratio of approximately 1 to 6; the possible phylogenetic significance of this feature is discussed.  相似文献   
7.
8.
Insulin-dependent diabetes mellitus (IDDM) is an autoimmune disease that is characterized by selective destruction of insulin secreting pancreatic islets beta-cells. The formation of cytokines (IL-1beta, IL-6, TNF-alpha, etc.) leads to extensive morphological damage of beta-cells, DNA fragmentation, decrease of glucose oxidation, impaired glucose-insulin secretion and decreased insulin action and proinsulin biosynthesis. We examined the protective effect of a 1,4-dihydropyridine (DHP) derivative cerebrocrast (synthesized in the Latvian Institute of Organic Synthesis) on pancreatic beta-cells in rats possessing diabetes induced with the autoimmunogenic compound streptozotocin (STZ). Cerebrocrast administration at doses of 0.05 and 0.5 mg/kg body weight (p.o.) 1 h or 3 days prior to STZ as well as at 24 and 48 h after STZ administration partially prevented pancreatic beta-cells from the toxic effects of STZ, and delayed the development of hyperglycaemia. Administration of cerebrocrast starting 48 h after STZ-induced diabetes in rats for 3 consecutive days at doses of 0.05 and 0.5 mg/kg body weight (p.o.) significantly decreased blood glucose level, and the effect remained 10 days after the last administration. Moreover, in these rats, cerebrocrast evoked an increase of serum immunoreactive insulin (IRI) level during 7 diabetic days as compared to both the control normal rats and the STZ-induced diabetic control rats. The STZ-induced diabetic rats that received cerebrocrast had a significantly high serum IRI level from the 14th to 21st diabetic days in comparison with the STZ-induced diabetic control.The IRI level in serum as well as the glucose disposal rate were significantly increased after stimulation of pancreatic beta-cells with glucose in normal rats that received cerebrocrast, administered 60 min before glucose. Glucose disposal rate in STZ-induced diabetic rats as a result of cerebrocrast administration was also increased in comparison with STZ-diabetic control rats. Administration of cerebrocrast in combination with insulin intensified the effect of insulin. The hypoglycaemic effect of cerebrocrast primarily can be explained by its immunomodulative properties. Moreover, cerebrocrast can act through extrapancreatic mechanisms that favour the expression of glucose transporters, de novo insulin receptors formation in several cell membranes as well as glucose uptake.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号