首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
  2021年   1篇
排序方式: 共有1条查询结果,搜索用时 15 毫秒
1
1.

The temperature-driven plasmon-exciton coupling in thermoresponsive dextran-graft-PNIPAM/Au nanoparticle/CdTe quantum dot (D-g-PNIPAM/Au NPs/CdTe QDs) hybrid nanosystem was studied. A significant (0.84 eV) splitting of the absorption peak was observed in the absorption spectrum of the nanosystem, which reflects the fact of formation of plexcitons, occurring due to strong plasmon-exciton coupling. An increasing with time plasmonic enhancement of the photoluminescence of CdTe QDs was revealed, as a result of the penetration of quantum dots into the volume of the D-g-PNIPAM/Au NP hybrid nanosystem and bonding to it. The heating–cooling cycle of the aqueous solution of the studied nanosystem leads to a reversible quenching-recovery alteration of the QD photoluminescence. The quenching was rationalized as a result of an increased probability of nonradiative resonance energy transfer (RET) from CdTe QDs to Au NPs, which occurs due to shortening of the NP-QD distance, caused by shrinking of the macromolecule due to cooling-induced lower critical solution temperature phase transition. Increasing the NP-QD distance in the heating stage recovers the QD PL intensity. The observed effect opens up opportunities for the controlled reversible temperature-driven tuning of the photoluminescence intensity of D-g-PNIPAM/Au NP/CdTe QD nanosystem, which is highly important for its potential use in photonics and biomedical applications.

  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号