首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   1篇
  2015年   2篇
  2014年   1篇
  2013年   1篇
  2009年   1篇
  2006年   1篇
  2005年   1篇
  2004年   2篇
  2000年   1篇
排序方式: 共有10条查询结果,搜索用时 15 毫秒
1
1.
2.
Cdc20, an activator of the anaphase-promoting complex (APC), is also required for the exit from mitosis in Saccharomyces cerevisiae. Here we show that during mitosis, both the inactivation of Cdc28-Clb2 kinase and the degradation of mitotic cyclin Clb2 occur in two steps. The first phase of Clb2 proteolysis, which commences at the metaphase-to-anaphase transition when Clb2 abundance is high, is dependent on Cdc20. The second wave of Clb2 destruction in telophase requires activation of the Cdc20 homolog, Hct1/Cdh1. The first phase of Clb2 destruction, which lowers the Cdc28-Clb2 kinase activity, is a prerequisite for the second. Thus, Clb2 proteolysis is not solely mediated by Hct1 as generally believed; instead, it requires a sequential action of both Cdc20 and Hct1.  相似文献   
3.
Centrosomes direct spindle morphogenesis to assemble a bipolar mitotic apparatus to enable error-free chromosome segregation and preclude chromosomal instability (CIN). Amplified centrosomes, a hallmark of cancer cells, set the stage for CIN, which underlies malignant transformation and evolution of aggressive phenotypes. Several studies report CIN and a tumorigenic and/or aggressive transformation in mitochondrial DNA (mtDNA)-depleted cells. Although several nuclear-encoded proteins are implicated in centrosome duplication and spindle organization, the involvement of mtDNA encoded proteins in centrosome amplification (CA) remains elusive. Here we show that disruption of mitochondrial function by depletion of mtDNA induces robust CA and mitotic aberrations in osteosarcoma cells. We found that overexpression of Aurora A, Polo-like kinase 4 (PLK4), and Cyclin E was associated with emergence of amplified centrosomes. Supernumerary centrosomes in rho0 (mtDNA-depleted) cells resulted in multipolar mitoses bearing “real” centrosomes with paired centrioles at the multiple poles. This abnormal phenotype was recapitulated by inhibition of respiratory complex I in parental cells, suggesting a role for electron transport chain (ETC) in maintaining numeral centrosomal homeostasis. Furthermore, rho0 cells displayed a decreased proliferative capacity owing to a G2/M arrest. Downregulation of nuclear-encoded p53 in rho0 cells underscores the importance of mitochondrial and nuclear genome crosstalk and may perhaps underlie the observed mitotic aberrations. By contrast, repletion of wild-type mtDNA in rho0 cells (cybrid) demonstrated a much lesser extent of CA and spindle multipolarity, suggesting partial restoration of centrosomal homeostasis. Our study provides compelling evidence to implicate the role of mitochondria in regulation of centrosome duplication, spindle architecture, and spindle pole integrity.  相似文献   
4.
Rapid and long-distance secretion of membrane components is critical for hyphal formation in filamentous fungi, but the mechanisms responsible for polarized trafficking are not well understood. Here, we demonstrate that in Candida albicans, the majority of the Golgi complex is redistributed to the distal region during hyphal formation. Randomly distributed Golgi puncta in yeast cells cluster toward the growing tip during hyphal formation, remain associated with the distal portion of the filament during its extension, and are almost absent from the cell body. This restricted Golgi localization pattern is distinct from other organelles, including the endoplasmic reticulum, vacuole and mitochondria, which remain distributed throughout the cell body and hypha. Hyphal-induced positioning of the Golgi and the maintenance of its structural integrity requires actin cytoskeleton, but not microtubules. Absence of the formin Bni1 causes a hyphal-specific dispersal of the Golgi into a haze of finely dispersed vesicles with a sedimentation density no different from that of normal Golgi. These results demonstrate the existence of a hyphal-specific, Bni1-dependent cue for Golgi integrity and positioning at the distal portion of the hyphal tip, and suggest that filamentous fungi have evolved a novel strategy for polarized secretion, involving a redistribution of the Golgi to the growing tip.  相似文献   
5.
Naegleria fowleri is a parasitic unicellular free living eukaryotic amoeba. The parasite spreads through contaminated water and causes primary amoebic meningoencephalitis (PAM). Therefore, it is of interest to understand its molecular pathogenesis. Hence, we analyzed the parasite genome for miRNAs (microRNAs) that are non-coding, single stranded RNA molecules. We identified 245 miRNAs using computational methods in N. fowleri, of which five miRNAs are conserved. The predicted miRNA targets were analyzed by using miRanda (software) and further studied the functions by subsequently annotating using AmiGo (a gene ontology web tool).  相似文献   
6.
Cdc42, a member of the Rho subfamily of small GTPases, is highly conserved in both sequence and function across eukaryotic species. In budding yeast, Cdc42 triggers polarized growth necessary for bud emergence via rearrangement of the actin cytoskeleton. It has been shown that the role of Cdc42 in bud emergence requires both Cdc28-Cln (G1) kinase and the passage through START. In this report, we show that Cdc42 also serves an essential function in the establishment of bud site prior to START by catalyzing the translocation of bud-site components such as Spa2 to the cell cortex. Our analysis of various conditional alleles of CDC42 suggests that these two functions (bud site establishment and bud emergence) are genetically separable. Surprisingly, the role of Cdc42 in the cortical localization of Spa2 appears to be independent of its well known GTP/GDP exchange factor Cdc24. We also provide evidence that this role of Cdc42 requires the function of the COPI coatomer complex.  相似文献   
7.
Diabetic nephropathy (DN) is one of the major microvascular diseases and most common in diabetic patient, finally results in kidney failure. The main features of DN are basement membrane thickening, microalbuminuria, proteinuria, glomerular, mesangial hypertrophy and ECM protein accumulation. Recent discoveries have been shown that numerous pathways are activated during the development of DN in Diabetes mellitus. The small non-coding miRNA plays an important role in regulating the pathway which is involved in DN. In our study we consolidate different pathways which regulated by miRNAs in molecular signaling which results in causing DN. We embedded entire pathway in the form of regulatory network and we could able to understand that some of the miRNAs like miR-29 family, miR-377 and miR-25 would be able to control DN.  相似文献   
8.
Centrosome amplification (CA), the presence of centrosomes that are abnormally numerous or enlarged, is a well-established driver of tumor initiation and progression associated with poor prognosis across a diversity of malignancies. Pancreatic ductal adenocarcinoma (PDAC) carries one of the most dismal prognoses of all cancer types. A majority of these tumors are characterized by numerical and structural centrosomal aberrations, but it is unknown how CA contributes to the disease and patient outcomes. In this study, we sought to determine whether CA was associated with worse clinical outcomes, poor prognostic indicators, markers of epithelial-mesenchymal transition (EMT), and ethnicity in PDAC. We also evaluated whether CA could precipitate more aggressive phenotypes in a panel of cultured PDAC cell lines. Using publicly available microarray data, we found that increased expression of genes whose dysregulation promotes CA was associated with worse overall survival and increased EMT marker expression in PDAC. Quantitative analysis of centrosomal profiles in PDAC cell lines and tissue sections uncovered varying levels of CA, and the expression of CA markers was associated with the expression of EMT markers. We induced CA in PDAC cells and found that CA empowered them with enhanced invasive and migratory capabilities. In addition, we discovered that PDACs from African American (AA) patients exhibited a greater extent of both numerical and structural CA than PDACs from European American (EA) patients. Taken together, these findings suggest that CA may fuel a more aggressive disease course in PDAC patients.  相似文献   
9.
The inner ear sensory organs possess extraordinary structural features necessary to conduct mechanosensory transduction for hearing and balance. Their structural beauty has fascinated scientists since the dawn of modern science and ensured a rigorous pursuit of the understanding of mechanotransduction. Sensory cells of the inner ear display unique structural features that underlie their mechanosensitivity and resolution, and represent perhaps the most distinctive form of a type of cellular polarity, known as planar cell polarity (PCP). Until recently, however, it was not known how the precise PCP of the inner ear sensory organs was achieved during development. Here, we review the PCP of the inner ear and recent advances in the quest for an understanding of its formation.  相似文献   
10.
During neurogenesis in the ventral nerve cord of the Drosophila embryo, Notch signaling participates in the pathway that mediates asymmetric fate specification to daughters of secondary neuronal precursor cells. In the NB4-2 --> GMC-1 --> RP2/sib lineage, a well-studied neuronal lineage in the ventral nerve cord, Notch signaling specifies sib fate to one of the daughter cells of GMC-1. Notch mediates this process via Mastermind (Mam). Loss of function for mam, similar to loss of function for Notch, results in GMC-1 symmetrically dividing to generate two RP2 neurons. Loss of function for mam also results in a severe neurogenic phenotype. In this study, we have undertaken a functional analysis of the Mam protein. We show that while ectopic expression of a truncated Mam protein induces a dominant-negative neurogenic phenotype, it has no effect on asymmetric fate specification. This truncated Mam protein rescues the loss of asymmetric specification phenotype in mam in an allele-specific manner. We also show an interallelic complementation of loss-of-asymmetry defect. Our results suggest that Mam proteins might associate during the asymmetric specification of cell fates and that the N-terminal region of the protein plays a role in this process.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号