首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   0篇
  15篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2006年   1篇
  2005年   2篇
  2004年   4篇
  2002年   2篇
  2000年   1篇
  1994年   1篇
排序方式: 共有15条查询结果,搜索用时 31 毫秒
1.
Phospholipase C (PLC) is a ubiquitous enzyme involved in the regulation of a variety of cellular processes. Its dependence on Ca2+ is well recognized, but it is not known how PLC activity is affected by physiological variations of the cytoplasmic Ca2+ concentration ([Ca2+](i)). Here, we applied evanescent wave microscopy to monitor PLC activity in parallel with [Ca2+](i) in individual insulin-secreting INS-1 cells using the phosphatidylinositol 4,5-bisphosphate- and inositol 1,4,5-trisphosphate-binding pleckstrin homology domain from PLCdelta(1) fused to green fluorescent protein (PH(PLCdelta1)-GFP) and the Ca2+ indicator fura red. In resting cells, PH(PLCdelta1)-GFP was located predominantly at the plasma membrane. Activation of PLC by muscarinic or purinergic receptor stimulation resulted in PH(PLCdelta1)-GFP translocation from the plasma membrane to the cytoplasm, detected as a decrease in evanescent wave-excited PH(PLCdelta1)-GFP fluorescence. Using this translocation as a measure of PLC activity, we found that depolarization by raising extracellular [K+] triggered activation of the enzyme. This effect could be attributed both to a rise of [Ca2+](i) and to depolarization per se, because some translocation persisted during depolarization in a Ca2+-deficient medium containing the Ca2+ chelator EGTA. Moreover, oscillations of [Ca2+](i) resulting from depolarization with Ca2+ influx evoked concentration-dependent periodic activation of PLC. We conclude that PLC activity is under tight dynamic control of [Ca2+](i). In insulin-secreting beta-cells, this mechanism provides a link between Ca2+ influx and release from intracellular stores that may be important in the regulation of insulin secretion.  相似文献   
2.
The dynamic actin cytoskeleton is important for a myriad of cellular functions, including intracellular transport, cell division, and cell shape. An important regulator of actin polymerization is the actin-related protein2/3 (Arp2/3) complex, which nucleates the polymerization of new actin filaments. In animals, Scar/WAVE family members activate Arp2/3 complex-dependent actin nucleation through interactions with Abi1, Nap1, PIR121, and HSCP300. Mutations in the Arabidopsis thaliana genes encoding homologs of Arp2/3 complex subunits PIR121 and NAP1 all show distorted trichomes as well as additional epidermal cell expansion defects, suggesting that a Scar/WAVE homolog functions in association with PIR121 and NAP1 to activate the Arp2/3 complex in Arabidopsis. In a screen for trichome branching defects, we isolated a mutant that showed irregularities in trichome branch positioning and expansion. We named this gene IRREGULAR TRICHOME BRANCH1 (ITB1). Positional cloning of the ITB1 gene showed that it encodes SCAR2, an Arabidopsis protein related to Scar/WAVE. Here, we show that itb1 mutants display cell expansion defects similar to those reported for the distorted class of trichome mutants, including disruption of actin and microtubule organization. In addition, we show that the scar homology domain (SHD) of ITB1/SCAR2 is necessary and sufficient for in vitro binding to Arabidopsis BRK1, the plant homolog of HSPC300. Overexpression of the SHD in transgenic plants causes a dominant negative phenotype. Our results extend the evidence that the Scar/WAVE pathway of Arp2/3 complex regulation exists in plants and plays an important role in regulating cell expansion.  相似文献   
3.
Electroporation induced by high-strength electrical fields has long been used to investigate membrane properties and facilitate transmembrane delivery of molecules and genes for research and clinical purposes. In the heart, electric field-induced passage of ions through electropores is a factor in defibrillation and postshock dysfunction. Voltage-clamp pulses can also induce electroporation, as exemplified by findings in earlier studies on rabbit ventricular myocytes: Long hyperpolarizations to ≤-110?mV induced influx of marker ethidium and irregular inward currents that were as large with external NMDG(+) as Na(+). In the present study, guinea pig ventricular myocytes were bathed with NMDG(+), Na(+) or NMDG(+)?+?La(3+) solution (36°C) and treated with five channel blockers. Hyperpolarization of myocytes in NMDG(+) solution elicited an irregular inward current (I (ep)) that reversed at -21.5?±?1.5?mV. In myocytes hyperpolarized with 200-ms steps every 30?s, I (ep) occurred in "episodes" that lasted for one to four steps. Boltzmann fits to data on the incidence of I (ep) per experiment indicate 50% incidence at -129.7?±?1.4?mV (Na(+)) and -146.3?±?1.6?mV (NMDG(+)) (slopes ≈-7.5?mV). I (ep) amplitude increased with negative voltage and was larger with Na(+) than NMDG(+) (e.g., -2.83?±?0.34 vs. -1.40?±?0.22?nA at -190?mV). La(3+) (0.2?mM) shortened episodes, shifted 50% incidence by -35?mV and decreased amplitude, suggesting that it inhibits opening/promotes closing of electropores. We compare our findings with earlier ones, especially in regard to electropore selectivity. In the Appendix, relative permeabilities and modified excluded-area theory are used to derive estimates of electropore diameters consistent with reversal potential -21.5?mV.  相似文献   
4.
Tumor cell migration plays a central role in the process of cancer metastasis. We recently identified dopamine and cAMP-regulated phosphoprotein of 32 kDa (DARPP-32) as an antimigratory phosphoprotein in breast cancer cells. Here we link this effect of DARPP-32 to Wnt-5a signaling by demonstrating that recombinant Wnt-5a triggers cAMP elevation at the plasma membrane and Thr34-DARPP-32 phosphorylation in MCF-7 cells. In agreement, both protein kinase A (PKA) inhibitors and siRNA-mediated knockdown of Frizzled-3 receptor or Gαs expression abolished Wnt-5a-induced phosphorylation of DARPP-32. Furthermore, Wnt-5a induced DARPP-32-dependent inhibition of MCF-7 cell migration. Phospho-Thr-34-DARPP-32 interacted with protein phosphatase-1 (PP1) and potentiated the Wnt-5a-mediated phosphorylation of CREB, a well-known PP1 substrate, but had no effect on CREB phosphorylation by itself. Moreover, inhibition of the Wnt-5a/DARPP-32/CREB pathway, by expression of dominant negative CREB (DN-CREB), diminished the antimigratory effect of Wnt-5a-induced phospho-Thr-34-DARPP-32. Phalloidin-staining revealed that that the presence of phospho-Thr-34-DARPP-32 in MCF-7 cells results in reduced filopodia formation. In accordance, the activity of the Rho GTPase Cdc42, known to be crucial for filopodia formation, was reduced in MCF-7 cells expressing phospho-Thr-34-DARPP-32. The effects of DARPP-32 on cell migration and filopodia formation could be reversed in T47D breast cancer cells that were depleted of their endogenous DARPP-32 by siRNA targeting. Consequently, Wnt-5a activates a Frizzled-3/Gαs/cAMP/PKA signaling pathway that triggers a DARPP-32- and CREB-dependent antimigratory response in breast cancer cells, representing a novel mechanism whereby Wnt-5a can inhibit breast cancer cell migration.Breast cancer is the most common form of cancer in women. Whereas the prognosis for breast cancer patients without local or distal dissemination is relatively favorable, the prognosis is considerably worse once distal metastasis has been established. It is therefore imperative to identify molecular targets and develop novel antimetastatic therapies that will stop, reduce, or delay the dissemination and growth of breast cancer metastasis.We recently isolated the dopamine and cAMP-regulated phosphoprotein of 32 kDa (DARPP-32),2 from a human breast expression library, as a DDR1-binding partner (1). Introduction of DARPP-32 in breast cancer cells lacking endogenous expression of this protein inhibited cell migration in a phospho-Thr-34-DARPP-32-dependent manner (1). DARPP-32 was originally identified 25 years ago as a dopamine and cAMP target enriched in dopaminoceptive neurones (2). Since then, a large body of work has shown that DARPP-32 is crucial for signal transmission by a wide array of neurotransmitters and drugs of abuse. DARPP-32 can act as either a phosphatase inhibitor or a kinase inhibitor depending on its phosphorylation state. Phosphorylation of Thr-34 by protein kinase A (PKA) converts DARPP-32 into a potent inhibitor of protein phosphatase-1 (PP1) (3), whereas phosphorylation at Thr-75 by Cdk5 turns DARPP-32 into an inhibitor of PKA (4). Downstream of DARPP-32 it has been shown that the activity of CREB and c-fos are strongly attenuated in DARPP-32 knockout mice (5). Despite the substantial amount of work done on DARPP-32 over the past 25 years, the role of this phosphoprotein outside the neuronal system has only recently started to be explored.Regarding the role of DARPP-32 in cancer, overexpression of DARPP-32 has been reported in gastric, colon, and prostate cancer (6, 7). In contrast, patients with esophageal squamous cell carcinoma that lacks DARPP-32 expression have reduced survival when compared with patients with DARPP-32-expressing esophageal squamous cell carcinomas (8, 9). Furthermore, DARPP-32 is needed to get a fully differentiated thyroid cell phenotype, and transformation of thyroid cells by constitutively activated Ras resulted in a loss of DARPP-32 expression (10). Thus, the role of DARPP-32 in cancer is somewhat uncertain, and little is known about the cell signaling mechanisms behind a possible suppressor or promotor role of DARPP-32 in cancer.Wnt-5a is a non-canonical member of the Wnt family of secreted glycoproteins that acts through the family of Frizzled G-protein-coupled receptor, Ror2, and co-receptors such as, LRP5/6, to mediate important events during development and cancer (1115). In the breast, the non-transforming Wnt-5a has been shown to inhibit epithelial cell migration (16), and in breast cancer, expression of Wnt-5a has been shown to be a predictor of longer disease-free survival (17). Wnt-5a expression has been shown to increase activation of the receptor tyrosine kinase DDR1 in breast epithelial cells upon plating on collagen (18). As DDR1 is a collagen-binding adhesion receptor important for cell migration (19), and its binding partner DARPP-32 is a phospho-dependent antimigratory molecule (1), we wanted to test whether the functional overlaps between DARPP-32 and Wnt-5a, could be a result of Wnt-5a acting upstream in the signaling process leading to DARPP-32 phosphorylation.Here we demonstrate that Wnt-5a can trigger a Frizzled-3/Gαs/cAMP signal that results in PKA-dependent phosphorylation of DARPP-32. Furthermore, we show that phospho-DARPP-32 potentiates Wnt-5a-mediated CREB activity and suppresses filopodia formation.  相似文献   
5.
Dyachok J  Zhu L  Liao F  He J  Huq E  Blancaflor EB 《The Plant cell》2011,23(10):3610-3626
The ARP2/3 complex, a highly conserved nucleator of F-actin, and its activator, the SCAR complex, are essential for growth in plants and animals. In this article, we present a pathway through which roots of Arabidopsis thaliana directly perceive light to promote their elongation. The ARP2/3-SCAR complex and the maintenance of longitudinally aligned F-actin arrays are crucial components of this pathway. The involvement of the ARP2/3-SCAR complex in light-regulated root growth is supported by our finding that mutants of the SCAR complex subunit BRK1/HSPC300, or other individual subunits of the ARP2/3-SCAR complex, showed a dramatic inhibition of root elongation in the light, which mirrored reduced growth of wild-type roots in the dark. SCAR1 degradation in dark-grown wild-type roots by constitutive photomorphogenic 1 (COP1) E3 ligase and 26S proteasome accompanied the loss of longitudinal F-actin and reduced root growth. Light perceived by the root photoreceptors, cryptochrome and phytochrome, suppressed COP1-mediated SCAR1 degradation. Taken together, our data provide a biochemical explanation for light-induced promotion of root elongation by the ARP2/3-SCAR complex.  相似文献   
6.
Rhizobial Nod factors stimulate somatic embryo development in Picea abies   总被引:4,自引:0,他引:4  
 Nod factors are lipochitooligosaccharides (LCOs) secreted by rhizobia. Nod factors trigger the nodulation programme in a compatible host. A bioassay was set up to test how crude (NGR234) and purified (NodS) Nod factors influence cell division and somatic embryogenesis in a conifer, Norway spruce (Picea abies). The Nod factors promoted cell division in the absence of auxin and cytokinin. More detailed studies showed that NodS stimulates development of proembryogenic masses from small cell aggregates and further embryo development. However, stimulation was only observed in low-density cell cultures. Our data suggest that rhizobial Nod factors substitute for conditioning factors in embryogenic cultures of Norway spruce. Received: 20 January 1999 / Revision received: 26 March 1999 / Accepted: 27 April 1999  相似文献   
7.
8.
Embryogenic cultures of Norway spruce (Picea abies) are composed of pro-embryogenic masses (PEMs) and somatic embryos of various developmental stages. Auxin is important for PEM formation and proliferation. In this report we show that depletion of auxin blocks PEM development and causes large-scale cell death. Extracts of the media conditioned by embryogenic cultures stimulate development of PEM aggregates in auxin-deficient cultures. Partial characterization of the conditioning factor shows that it is a lipophilic, low-molecular-weight molecule, which is sensitive to chitinase and contains GlcNAc residues. On the basis of this information, we propose that the factor is a lipophilic chitin oligosaccharide (LCO). The amount of LCO correlates to the developmental stages of PEMs and embryos, with the highest level in the media conditioned by developmentally blocked cultures. LCO is not present in nonembryogenic cultures. Cell death, induced by withdrawal of auxin, is suppressed by extra supply of endogenous LCO or Nod factor from Rhizobium sp. NGR234. The effect can be mimicked by a chitotetraose or chitinase from Streptomyces griseus. Taken together, our data suggest that endogenous LCO acts as a signal molecule stimulating PEM and early embryo development in Norway spruce.  相似文献   
9.
Superfusion of heart cells with hyperosmotic solution causes cell shrinkage and inhibition of membrane ionic currents, including delayed-rectifer K+ currents. To determine whether osmotic shrinkage also inhibits inwardly-rectifying K+ current (IK1), guinea-pig ventricular myocytes in the perforated-patch or ruptured-patch configuration were superfused with a Tyrodes solution whose osmolarity (T) relative to isosmotic (1T) solution was increased to 1.3–2.2T by addition of sucrose. Hyperosmotic superfusate caused a rapid shrinkage that was accompanied by a negative shift in the reversal potential of Ba2+-sensitive IK1, an increase in the amplitude of outward IK1, and a steepening of the slope of the inward IK1-voltage (V) relation. The magnitude of these effects increased with external osmolarity. To evaluate the underlying changes in chord conductance (GK1) and rectification, GK1-V data were fitted with Boltzmann functions to determine maximal GK1 (GK1max) and voltage at one-half GK1max (V0.5). Superfusion with hyperosmotic sucrose solutions led to significant increases in GK1max (e.g., 28±2% with 1.8T), and significant negative shifts in V0.5 (e.g., –6.7±0.6 mV with 1.8T). Data from myocytes investigated under hyperosmotic conditions that do not induce shrinkage indicate that GK1max and V0.5 were insensitive to hyperosmotic stress per se but sensitive to elevation of intracellular K+. We conclude that the effects of hyperosmotic sucrose solutions on IK1 are related to shrinkage-induced concentrating of intracellular K+.  相似文献   
10.
Propagation of Norway spruce via somatic embryogenesis   总被引:5,自引:0,他引:5  
Somatic embryogenesis combined with cryopreservation is an attractive method to propagate Norway spruce (Picea abies) vegetatively both as a tool in the breeding programme and for large-scale clonal propagation of elite material. Somatic embryos are also a valuable tool for studying regulation of embryo development. Embryogenic cell lines of Norway spruce are established from zygotic embryos. The cell lines proliferate as proembryogenic masses (PEMs). Somatic embryos develop from PEMs. PEM-to-somatic embryo transition is a key developmental switch that determines the yield and quality of mature somatic embryos. Withdrawal of plant growth regulators (PGRs) stimulates PEM-to-somatic embryo transition accompanied by programmed cell death (PCD) in PEMs. This PCD is mediated by a marked decrease in extracellular pH. If the acidification is abolished by buffering the culture medium, PEM-to-somatic embryo transition together with PCD is inhibited. Cell death, induced by withdrawal of PGRs, can be suppressed by extra supply of lipo-chitooligosaccharides (LCOs). Extracellular chitinases are probably involved in production and degradation of LCOs. During early embryogeny, the embryos form an embryonal mass surrounded by a surface layer. The formation of a surface layer is accompanied by a switch in the expression pattern of an Ltp-like gene (Pa18) and a homeobox gene (PaHB1), from ubiquitous expression in PEMs to surface layer-specific in somatic embryos. Ectopic expression of Pa18 and PaHB1 leads to an early developmental block. Transgenic embryos and plants of Norway spruce are routinely produced by using a biolistic approach. The transgenic material is used for studying the importance of specific genes for regulating plant development, but transgenic plants can also be used for identification of candidate genes for use in the breeding programme.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号