首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39篇
  免费   3篇
  2022年   1篇
  2021年   3篇
  2020年   2篇
  2019年   1篇
  2016年   2篇
  2015年   3篇
  2014年   3篇
  2013年   5篇
  2012年   2篇
  2011年   2篇
  2010年   2篇
  2009年   1篇
  2006年   2篇
  2004年   1篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1991年   1篇
  1990年   1篇
  1985年   4篇
  1984年   1篇
  1980年   1篇
排序方式: 共有42条查询结果,搜索用时 15 毫秒
1.
Trehalase (EC 3.2.1.28), an important glycosidase involved in regulating trehalose levels and metabolic energy in insects, was measured in cell lines from fall army worm, Spodoptera frugiperda and salt marsh caterpillar, Estigmene acrea, treated with either glucose or trehalose in the presence or absence of Tipula Iridescent Virus (TIV), a cytoplasmic deoxyribovirus. In medium containing 15-35 mM trehalose, both of these cells increased their trehalase activities by 4.5 to 8x the basal levels from cells in glucose medium. Trehalase activity was rapidly reduced after cells were exposed to TIV. Maximum loss in activity (70-90%), occurring about the same time as peak viral DNA synthesis, was significantly delayed when cells were pre-incubated with 30 mM trehalose. These experiments demonstrate the potential utility of trehalase as a marker for monitoring stresses induced by viral infection and changes in nutrition.  相似文献   
2.
Strain C5.84 is a Tn5-751 insertion mutant of Aeromonas hydrophila which is unable to secrete extracellular proteins, instead accumulating them in the periplasm (B. Jiang and S.P. Howard, J. Bacteriol. 173:1241-1249, 1991). A 3.5-kb BglII fragment which complements this mutation was isolated from the chromosome of the parent strain. Analysis of this fragment revealed an operon-like structure with two complete genes, exeA and exeB, a functional promoter 5' to the exeA gene, and a 13-bp inverted repeat immediately 3' to the exeB gene. Although the transposon had inserted in exeA, provision of a wild-type copy of this gene alone in trans did not restore competence for export to C5.84. Complementation required the presence of both exeA and exeB, and marker exchange mutagenesis confirmed the requirement for both gene products for secretion. In vitro expression as well as analysis of the deduced amino acid sequence of ExeA indicated that it is a hydrophilic 60-kDa protein with a consensus ATP binding site. ExeB is a 25-kDa basic protein which shares limited homology with PulB, a protein of unknown function associated with the maltose regulon of Klebsiella oxytoca, and OutB, a protein which has been shown to be required for efficient secretion in Erwinia chrysanthemi. The hydrophilic character of these proteins and preliminary localization studies suggested that they are anchored to the inner membrane. These results demonstrate the involvement of a second operon encoding a putative ATP-binding protein in the secretion of extracellular proteins from gram-negative bacteria and further suggest that the cytoplasmic compartment may play a greater role in protein translocation across the outer membrane from the periplasm than previously thought.  相似文献   
3.
Vegetation in tropical Asia is highly diverse due to large environmental gradients and heterogeneity of landscapes. This biodiversity is threatened by intense land use and climate change. However, despite the rich biodiversity and the dense human population, tropical Asia is often underrepresented in global biodiversity assessments. Understanding how climate change influences the remaining areas of natural vegetation is therefore highly important for conservation planning. Here, we used the adaptive Dynamic Global Vegetation Model version 2 (aDGVM2) to simulate impacts of climate change and elevated CO2 on vegetation formations in tropical Asia for an ensemble of climate change scenarios. We used climate forcing from five different climate models for representative concentration pathways RCP4.5 and RCP8.5. We found that vegetation in tropical Asia will remain a carbon sink until 2099, and that vegetation biomass increases of up to 28% by 2099 are associated with transitions from small to tall woody vegetation and from deciduous to evergreen vegetation. Patterns of phenology were less responsive to climate change and elevated CO2 than biomes and biomass, indicating that the selection of variables and methods used to detect vegetation changes is crucial. Model simulations revealed substantial variation within the ensemble, both in biomass increases and in distributions of different biome types. Our results have important implications for management policy, because they suggest that large ensembles of climate models and scenarios are required to assess a wide range of potential future trajectories of vegetation change and to develop robust management plans. Furthermore, our results highlight open ecosystems with low tree cover as most threatened by climate change, indicating potential conflicts of interest between biodiversity conservation in open ecosystems and active afforestation to enhance carbon sequestration.  相似文献   
4.
5.
A trypsin inhibitor purified from the seeds of the Manila tamarind, Pithecellobium dulce (PDTI), was studied for its effects on growth parameters and developmental stages of  Helicoverpa armigera. PDTI exhibited inhibitory activity against bovine trypsin (~86%; ~1.33 ug/ml IC50). The inhibitory activity of PDTI was unaltered over a wide range of temperature, pH, and in the presence of dithiothreitol. Larval midgut proteases were unable to digest PDTI for up to 12 h of incubation. Dixon and Lineweaver–Burk double reciprocal plots analysis revealed a competitive inhibition mechanism and a Ki of ~3.9 × 10?8 M. Lethal dose (0.50% w/w) and dosage for weight reduction by 50% (0.25% w/w) were determined. PDTI showed a dose‐dependent effect on mean larval weight and a series of nutritional disturbances. In artificial diet at 0.25% w/w PDTI, the efficiency of conversion of ingested food, of digested food, relative growth rate, and growth index declined, whereas approximate digestibility, relative consumption rate, metabolic cost, consumption index, and total developmental period were increased in larvae. This is the first report of antifeedant and antimetabolic activities of PDTI on midgut proteases of  H. armigera.  相似文献   
6.
The pathogenesis of inflammation in the central nervous system (CNS), which contributes to numerous neurodegenerative diseases and results in encephalopathy and neuroinflammation, is poorly understood. Sphingolipid metabolism plays a crucial role in maintaining cellular processes in the CNS, and thus mediates the various pathological consequences of inflammation. For a better understanding of the role of sphingosine kinase activation during neuroinflammation, we developed a bacterial lipopolysaccharide (LPS)-induced brain injury model. The onset of the inflammatory response was observed beginning 4 hours after intracerebral injection of LPS into the lateral ventricles of the brain. A comparison of established neuroinflammatory parameters such as white matter rarefactions, development of cytotoxic edema, astrogliosis, loss of oligodendrocytes, and major cytokines levels in wild type and knockout mice suggested that the neuroinflammatory response in SphK1-/- mice was significantly upregulated. At 6 hours after intracerebroventricular injection of LPS in SphK1-/- mice, the immunoreactivity of the microglia markers and astrocyte marker glial fibrillary acidic protein (GFAP) were significantly increased, while the oligodendrocyte marker O4 was decreased compared to WT mice. Furthermore, western blotting data showed increased levels of GFAP. These results suggest that SphK1 activation is involved in the regulation of LPS induced brain injury. RESEARCH HIGHLIGHTS: ? Lipopolysaccharide (LPS) intracerebral injection induces severe neuroinflammation. ? Sphingosine kinase 1 deletion worsens the effect of the LPS. ? Overexpression of SphK1 might be a potential new treatment approach to neuroinflammation.  相似文献   
7.
8.
9.
Endocannabinoids are well‐known regulators of neurotransmission by activating the cannabinoid (CB) receptors. Endocannabinoids are being used extensively for the treatment of various neurological disorders such as Alzheimer's and Parkinson's diseases. Although endocannabinoids are well studied in cell survival, proliferation, and differentiation in various neurological disorders and several cancers, the functional role in the regulation of blood cell development is less examined. In the present study, virodhamine, which is an agonist of CB receptor‐2, was used to examine its effect on megakaryocytic development from a megakaryoblastic cell. We observed that virodhamine increases cell adherence, cell size, and cytoplasmic protrusions. Interestingly, we have also observed large nucleus and increased expression of megakaryocytic marker (CD61), which are the typical hallmarks of megakaryocytic differentiation. Furthermore, the increased expression of CB2 receptor was noticed in virodhamine‐induced megakaryocytic cells. The effect of virodhamine on megakaryocytic differentiation could be mediated through CB2 receptor. Therefore, we have studied virodhamine induced molecular regulation of megakaryocytic differentiation; mitogen‐activated protein kinase (MAPK) activity, mitochondrial function, and reactive oxygen species (ROS) production were majorly affected. The altered mitochondrial functions and ROS production is the crucial event associated with megakaryocytic differentiation and maturation. In the present study, we report that virodhamine induces megakaryocytic differentiation by triggering MAPK signaling and ROS production either through MAPK effects on ROS‐generating enzymes or by the target vanilloid receptor 1‐mediated regulation of mitochondrial function.  相似文献   
10.

Background

Increasing evidence suggests an association between neuronal cell cycle (CCL) events and the processes that underlie neurodegeneration in Alzheimer’s disease (AD). Elevated levels of oxidative stress markers and mitochondrial dysfunction are also among early events in AD. Recent studies have reported the role of CCL checkpoint proteins and tumor suppressors, such as ATM and p53 in the control of glycolysis and oxidative metabolism in cancer, but their involvement in AD remains uncertain.

Methods and Findings

In this postmortem study, we measured gene expression levels of eight CCL checkpoint proteins in the superior temporal cortex (STC) of persons with varying severities of AD dementia and compare them to those of cognitively normal controls. To assess whether the CCL changes associated with cognitive impairment in AD are specific to dementia, gene expression of the same proteins was also measured in STC of persons with schizophrenia (SZ), which is also characterized by mitochondrial dysfunction. The expression of CCL-checkpoint and DNA damage response genes: MDM4, ATM and ATR was strongly upregulated and associated with progression of dementia (cognitive dementia rating, CDR), appearing as early as questionable or mild dementia (CDRs 0.5–1). In addition to gene expression changes, the downstream target of ATM-p53 signaling - TIGAR, a p53-inducible protein, the activation of which can regulate energy metabolism and protect against oxidative stress was progressively decreased as severity of dementia evolved, but it was unaffected in subjects with SZ. In contrast to AD, different CCL checkpoint proteins, which include p53, CHEK1 and BRCA1 were significantly downregulated in SZ.

Conclusions

These results support the activation of an ATM signaling and DNA damage response network during the progression of AD dementia, while the progressive decrease in the levels of TIGAR suggests loss of protection initiated by ATM-p53 signaling against intensifying oxidative stress in AD.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号