首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   54篇
  免费   11篇
  2018年   2篇
  2017年   1篇
  2015年   4篇
  2014年   2篇
  2013年   5篇
  2012年   2篇
  2011年   1篇
  2010年   2篇
  2009年   2篇
  2008年   1篇
  2005年   7篇
  2004年   2篇
  2003年   2篇
  2002年   1篇
  2001年   2篇
  1998年   1篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1990年   4篇
  1989年   2篇
  1988年   1篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1980年   1篇
  1979年   2篇
  1975年   1篇
  1974年   2篇
  1973年   2篇
  1971年   2篇
  1970年   2篇
  1969年   1篇
排序方式: 共有65条查询结果,搜索用时 31 毫秒
1.
Nuclear DNA was extracted from each of the eight species comprising the Drosophila melanogaster species subgroup. Southern hybridization of this DNA by using a molecular probe specific for the alpha-amylase coding region showed that the duplicated structure of the amylase locus, first found in D. melanogaster, is conserved among all species of the melanogaster subgroup. Evidence is also presented for the concerted evolution of the duplicated genes within each species. In addition, it is shown that the glucose repression of amylase gene expression, which has been extensively studied in D. melanogaster, is not confined to this species but occurs in all eight members of the species subgroup. Thus, both the duplicated gene structure and the glucose repression of Drosophila amylase gene activity are stable over extended periods of evolutionary time.   相似文献   
2.
An internal fragment of the Corynebacterium glutamicum recA gene was amplified by the polymerase chain reaction (PCR) using degenerate primers corresponding to two short sequences that are well conserved homology with RecA sequences from other bacteria including the invariant and functionally conserved amino acids Leu-126, Asp-144, Gly-157, Arg-169 and Asn-193. Highest identity (91%) was shared with the gram-positive Mycobacterium tuberculosis RecA sequence. The amplified fragment was cloned into a conditional suicide vector, pBGS8, and used to generate recA deficient strains of C. glutamicum and Brevibacterium lactofermentum by insertional inactivation. These strains exhibited classical RecA phenotypes including reduced recombinational activity and increased sensitivity to DNA-damaging agents such as UV irradiation, mitomycin C and methyl-methanesulphonate.  相似文献   
3.
The trpD gene from tryptophan-hyperproducing Corynebacterium glutamicum ATCC 21850 was isolated on the basis of its ability to confer resistance to 5-methyltryptophan on wild-type C. glutamicum AS019. Comparative sequence analysis of the genes from the wild-type AS019 and ATCC 21850 trpD genes revealed two amino acid substitutions at the protein level. Further analysis demonstrated that the trpD gene product from ATCC 21850, anthranilate phosphoribosyltransferase, was more resistant to feedback inhibition by either tryptophan or 5-methyltryptophan than its wild-type counterpart. It is proposed that phosphoribosyltransferase insensitivity to tryptophan in ATCC 21850 contributes to an elevated level of tryptophan biosynthesis.  相似文献   
4.
After disulphide bonds are reduced with dithiothreitol, trans-3- (α-bromomethyl)-3’-[α- (trimethylammonium)methyl]azobenzene (trans-QBr) alkylates a sulfhydryl group on receptors. The membrane conductance induced by this “tethered agonist” shares many properties with that induced by reversible agonists. Equilibrium conductance increases as the membrane potential is made more negative; the voltage sensitivity resembles that seen with 50 [mu]M carbachol. Voltage- jump relaxations follow an exponential time-course; the rate constants are about twice as large as those seen with 50 μM carbachol and have the same voltage and temperature sensitivity. With reversible agonists, the rate of channel opening increases with the frequency of agonist-receptor collisions: with tethered trans-Qbr, this rate depends only on intramolecular events. In comparison to the conductance induced by reversible agonists, the QBr-induced conductance is at least 10-fold less sensitive to competitive blockade by tubocurarine and roughly as sensitive to “open-channel blockade” bu QX-222. Light-flash experiments with tethered QBr resemble those with the reversible photoisomerizable agonist, 3,3’,bis-[α-(trimethylammonium)methyl]azobenzene (Bis-Q): the conductance is increased by cis {arrow} trans photoisomerizations and decreased by trans {arrow} cis photoisomerizations. As with Bis-Q, ligh-flash relaxations have the same rate constant as voltage-jump relaxations. Receptors with tethered trans isomer. By comparing the agonist-induced conductance with the cis/tans ratio, we conclude that each channel’s activation is determined by the configuration of a single tethered QBr molecule. The QBr-induced conductance shows slow decreases (time constant, several hundred milliseconds), which can be partially reversed by flashes. The similarities suggest that the same rate-limiting step governs the opening and closing of channels for both reversible and tethered agonists. Therefore, this step is probably not the initial encounter between agonist and receptor molecules.  相似文献   
5.
6.
7.
8.
Microorganisms originating from a soil contaminated by low levels of polycyclic aromatic hydrocarbons (PAHs) were enriched with three- and four-ring PAHs as primary substrates in the presence of benzo[a]pyrene (BaP). Most enrichment cultures, isolated in the presence or absence of a sorptive matrix, significantly transformed BaP. Evidence of BaP mineralization was obtained with cultures enriched on phenanthrene and anthracene. Our findings supplement literature data suggesting the wide occurrence of microbial activity against BaP. Journal of Industrial Microbiology & Biotechnology (2002) 28, 70–73 DOI: 10.1038/sj/jim/7000211 Received 11 December 2000/ Accepted in revised form 04 September 2001  相似文献   
9.
A series of experiments reported in the literature using fluxomics as an efficient functional genomics tool revealed that the L-lysine production of the Corynebacterium glutamicum strain MH20-22B correlates with the extent of intracellular NADPH supply. Some alternative metabolic engineering strategies to increase intracellular NADPH supply in the C. glutamicum strain DSM5715 were considered and finally the redirection of carbon flux through the pentose phosphate pathway with two NADPH generating enzymatic reactions was favored. Elsewhere, the construction of a phosphoglucose isomerase (Pgi) null mutant of the C. glutamicum strain DSM5715 has been described by utilizing genetic engineering as well as some aspects of its metabolic phenotype. Most interestingly, it was shown that not only could the L-lysine formation be increased by 1.7-fold but the by-product concentration for the null mutant strain was also able to be drastically reduced. In this publication we discuss this metabolic phenotype in detail and present additional data on by-product formation as well as yield considerations. Results from isotope based metabolic flux analysis in combination with considerations on NADPH metabolism clearly exclude the existence of Pgi isoenzymes in C. glutamicum strain DSM5715. The genome region containing the pgi gene was analyzed. It cannot be excluded that polar effects might have been caused by the disruption of the pgi gene and might have contributed to the observed metabolic phenotype of C. glutamicum Pgi mutants. We illustrate growth characteristics of a Pgi mutant of an industrial L-lysine production strain. A reduced growth rate and a biphasic growth behavior was observed. The importance of NADPH reoxidation for well balanced growth in Pgi mutants is discussed. Another phosphoglucose isomerase mutant of C. glutamicum has been described in literature with which an increase in L-lysine yield from 42 to 52% was observed. This finding highlights the general potential of metabolic flux redirection towards the pentose phosphate pathway, which could be used for metabolic engineering of the biotechnological synthesis of (1) aromatic amino acids and (2) chemicals whose synthesis depends on intracellular NADPH supply.  相似文献   
10.
Accumulating evidence suggests that obesity and enhanced inflammatory reactions are predisposing conditions for developing colon cancer. Obesity is associated with high levels of circulating leptin. Leptin is an adipocytokine that is secreted by adipose tissue and modulates immune response and inflammation. Lipid droplets (LD) are organelles involved in lipid metabolism and production of inflammatory mediators, and increased numbers of LD were observed in human colon cancer. Leptin induces the formation of LD in macrophages in a PI3K/mTOR pathway-dependent manner. Moreover, the mTOR is a serine/threonine kinase that plays a key role in cellular growth and is frequently altered in tumors. We therefore investigated the role of leptin in the modulation of mTOR pathway and regulation of lipid metabolism and inflammatory phenotype in intestinal epithelial cells (IEC-6 cells). We show that leptin promotes a dose- and time-dependent enhancement of LD formation. The biogenesis of LD was accompanied by enhanced CXCL1/CINC-1, CCL2/MCP-1 and TGF-β production and increased COX-2 expression in these cells. We demonstrated that leptin-induced increased phosphorylation of STAT3 and AKT and a dose and time-dependent mTORC activation with enhanced phosphorilation of the downstream protein P70S6K protein. Pre-treatment with rapamycin significantly inhibited leptin effects in LD formation, COX-2 and TGF-β production in IEC-6 cells. Moreover, leptin was able to stimulate the proliferation of epithelial cells on a mTOR-dependent manner. We conclude that leptin regulates lipid metabolism, cytokine production and proliferation of intestinal cells through a mechanism largely dependent on activation of the mTOR pathway, thus suggesting that leptin-induced mTOR activation may contribute to the obesity-related enhanced susceptibility to colon carcinoma.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号