首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   1篇
  2023年   1篇
  2019年   2篇
  2015年   2篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2007年   2篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2001年   1篇
  1999年   1篇
排序方式: 共有16条查询结果,搜索用时 15 毫秒
1.
Variation in eye size is ubiquitous across taxa. Increased eye size is correlated with improved vision and increased fitness via shifts in behavior. Tests of the drivers of eye size evolution have focused on macroevolutionary studies evaluating the importance of light availability. Predator‐induced mortality has recently been identified as a potential driver of eye size variation. Here, we tested the influence of increased predation by the fish predator, the alewife (Alosa pseudoharengus) on eye size evolution in waterfleas (Daphnia ambigua) from lakes in Connecticut. We quantified the relative eye size of Daphnia from lakes with and without alewife using wild‐caught and third‐generation laboratory reared specimens. This includes comparisons between lakes where alewife are present seasonally (anadromous) or permanently (landlocked). Wild‐caught specimens did not differ in eye size across all lakes. However, third‐generation lab reared Daphnia from lakes with alewife, irrespective of the form of alewife predation, exhibited significantly larger eyes than Daphnia from lakes without alewife. This genetically based increase in eye size may enhance the ability of Daphnia to detect predators. Alternatively, such shifts in eye size may be an indirect response to Daphnia aggregating at the bottom of lakes. To test these mechanisms, we collected Daphnia as a function of depth and found that eye size differed in Daphnia found at the surface versus the bottom of the water column between anadromous alewife and no alewife lakes. However, we found no evidence of Daphnia aggregating at the bottom of lakes. Such results indicate that the evolution of a larger eye may be explained by a connection between eyes and enhanced survival. We discuss the cause of the lack of concordance in eye size variation between our phenotypic and genetic specimens and the ultimate drivers of eye size.  相似文献   
2.
Phenotypic traits associated with light capture and phylogenetic relationships were characterized in 34 strains of diversely pigmented marine and freshwater cryptophytes. Nuclear SSU and partial LSU rDNA sequence data from 33 of these strains plus an additional 66 strains produced a concatenated rooted maximum likelihood tree that classified the strains into 7 distinct clades. Molecular and phenotypic data together support: (i) the reclassification of Cryptomonas irregularis NIES 698 to the genus Rhodomonas, (ii) revision of phycobiliprotein (PBP) diversity within the genus Hemiselmis to include cryptophyte phycocyanin (Cr‐PC) 569, (iii) the inclusion of previously unidentified strain CCMP 2293 into the genus Falcomonas, even though it contains cryptophyte phycoerythrin 545 (Cr‐PE 545), and (iv) the inclusion of previously unidentified strain CCMP 3175, which contains Cr‐PE 545, in a clade with PC‐containing Chroomonas species. A discriminant analysis‐based model of group membership correctly predicted 70.6% of the clades using three traits: PBP concentration · cell?1, the wavelength of PBP maximal absorption, and habitat. Non‐PBP pigments (alloxanthin, chl‐a, chl‐c2, α‐carotene) did not contribute significantly to group classification, indicating the potential plasticity of these pigments and the evolutionary conservation of the PBPs. Pigment data showed evidence of trade‐offs in investments in PBPs vs. chlorophylls (a +c2).  相似文献   
3.
Genetic correlations among traits alter evolutionary trajectories due to indirect selection. Pleiotropy, chance linkage, and selection can all lead to genetic correlations, but have different consequences for phenotypic evolution. We sought to assess the mechanisms contributing to correlations with size at maturity in the cyclic parthenogen Daphnia pulicaria. We selected on size in each of four populations that differ in the frequency of sex, and evaluated correlated responses in a life table. Size at advanced adulthood, reproductive output, and adult growth rate clearly showed greater responses in high‐sex populations, with a similar pattern in neonate size and r. This pattern is expected only when trait correlations are favored by selection and the frequency of sex favors the creation and demographic expansion of highly fit clones. Juvenile growth and age at maturity did not diverge consistently. The inter‐clutch interval appeared to respond more strongly in low‐sex populations, but this was not statistically significant. Our data support the hypothesis that correlated selection is the strongest driver of genetic correlations, and suggest that in organisms with both sexual and asexual reproduction, adaptation can be enhanced by recombination.  相似文献   
4.
Telomeres, comprised of short repetitive sequences, are essential for genome stability and have been studied in relation to cellular senescence and aging. Telomerase, the enzyme that adds telomeric repeats to chromosome ends, is essential for maintaining the overall telomere length. A lack of telomerase activity in mammalian somatic cells results in progressive shortening of telomeres with each cellular replication event. Mammals exhibit high rates of cell proliferation during embryonic and juvenile stages but very little somatic cell proliferation occurs during adult and senescent stages. The telomere hypothesis of cellular aging states that telomeres serve as an internal mitotic clock and telomere length erosion leads to cellular senescence and eventual cell death. In this report, we have examined telomerase activity, processivity, and telomere length in Daphnia, an organism that grows continuously throughout its life. Similar to insects, Daphnia telomeric repeat sequence was determined to be TTAGG and telomerase products with five-nucleotide periodicity were generated in the telomerase activity assay. We investigated telomerase function and telomere lengths in two closely related ecotypes of Daphnia with divergent lifespans, short-lived D. pulex and long-lived D. pulicaria. Our results indicate that there is no age-dependent decline in telomere length, telomerase activity, or processivity in short-lived D. pulex. On the contrary, a significant age dependent decline in telomere length, telomerase activity and processivity is observed during life span in long-lived D. pulicaria. While providing the first report on characterization of Daphnia telomeres and telomerase activity, our results also indicate that mechanisms other than telomere shortening may be responsible for the strikingly short life span of D. pulex.  相似文献   
5.
Ribosomal (r)DNA undergoes concerted evolution, the mechanisms of which are unequal crossing over and gene conversion. Despite the fundamental importance of these mechanisms to the evolution of rDNA, their rates have been estimated only in a few model species. We estimated recombination rate in rDNA by quantifying the relative frequency of intraindividual length variants in an expansion segment of the 18S rRNA gene of the cladoceran crustacean, Daphnia obtusa, in four apomictically propagated lines. We also used quantitative PCR to estimate rDNA copy number. The apomictic lines were sampled every 5 generations for 90 generations, and we considered each significant change in the frequency distribution of length variants between time intervals to be the result of a recombination event. Using this method, we calculated the recombination rate for this region to be 0.02-0.06 events/generation on the basis of three different estimates of rDNA copy number. In addition, we observed substantial changes in rDNA copy number within and between lines. Estimates of haploid copy number varied from 53 to 233, with a mean of 150. We also measured the relative frequency of length variants in 30 lines at generations 5, 50, and 90. Although length variant frequencies changed significantly within and between lines, the overall average frequency of each length variant did not change significantly between the three generations sampled, suggesting that there is little or no bias in the direction of change due to recombination.  相似文献   
6.
7.
Eye size is an indicator of visual capability, and macroevolutionary patterns reveal that taxa inhabiting dim environments have larger eyes than taxa from bright environments. This suggests that the light environment is a key driver of variation in eye size. Yet other factors not directly linked with visual tasks (i.e., non-sensory factors) may influence eye size. We sought to jointly investigate the roles of sensory (light) and non-sensory factors (food) in determining eye size and ask whether non-sensory factors could constrain visual capabilities. We tested environmental influences on eye size in four species of the freshwater crustacean Daphnia, crossing bright and dim light levels with high and low resource levels. We measured absolute eye size and eye size relative to body size in early and late adulthood. In general, Daphnia reared on low resources had smaller eyes, both absolutely and relatively. In contrast to the dominant macroevolutionary pattern, phenotypic plasticity in response to light was rarely significant. These patterns of phenotypic plasticity were true for overall diameter of the eye and the diameter of individual facets. We conclude that non-sensory environmental factors can influence sensory systems, and in particular, that resource availability may be an important constraint on visual capability.  相似文献   
8.
The aim of this study was to determine whether a recombinant vesicular stomatitis virus (VSV) vector encoding a transgene could be used to infect and express a foreign gene in embryonic primary cell cultures derived from the freshwater microcrustacean Daphnia, the most widely used ecotoxicological model organism. To facilitate the evaluation of gene transfer, a reproducible method for establishing primary cultures from Daphnia embryonic tissues was developed. Within 24 hr after infection, transgene expression could be detected in cell culture. VSV was found to replicate in the cells with no apparent cytopathic effect. Here we report the first evidence of gene transfer and foreign gene expression in cultures of Daphnia embryonic cells using a recombinant viral vector.  相似文献   
9.
Consumer-resource interactions are a central issue in evolutionary and community ecology because they play important roles in selection and population regulation. Most consumers encounter resource variation at multiple scales, and respond through phenotypic plasticity in the short term or evolutionary divergence in the long term. The key traits for these responses may influence resource acquisition, assimilation, and/or allocation. To identify relevant candidate genes, we experimentally assayed genome-wide gene expression in pond and lake Daphnia ecotypes exposed to alternate resource environments. One was a simple, high-quality laboratory diet, Ankistrodesmus falcatus. The other was the complex natural seston from a large lake. In temporary ponds, Daphnia generally experience high-quality, abundant resources, whereas lakes provide low-quality, seasonally shifting resources that are chronically limiting. For both ecotypes, we used replicate clones drawn from a number of separate populations. Fourteen genes were differentially regulated with respect to resources, including genes involved in gut processes, resource allocation, and activities with no obvious connection to resource exploitation. Three genes were differentially regulated in both ecotypes; the others may play a role in ecological divergence. Genes clearly linked to gut processes include two peritrophic matrix proteins, a Niemann-Pick type C2 gene, and a chymotrypsin. A pancreatic lipase, an epoxide hydrolase, a neuroparsin, and an UDP-dependent glucuronyltransferase are potentially involved in resource allocation through effects on energy processing and storage or hormone pathways. We performed quantitative rt-PCR for eight genes in independent samples of three clones of each of the two ecotypes. Though these largely confirmed observed differential regulation, some genes' expression was highly variable among clones. Our results demonstrate the value of matching the level of biological replication in genome-wide assays to the question, as it gave us insight into ecotype-level responses at ecological and evolutionary scales despite substantial variation within ecotypes.  相似文献   
10.
Dudycha JL 《Oecologia》2003,135(4):555-563
Senescence is a general decline of physiological state that accompanies advancing age. It affects nearly all organisms, but patterns of senescence vary markedly, even among closely related taxa. Understanding the evolution of this diversity requires information about environmental effects on the expression of variation among taxa. I examined genetically-based variation of senescence within and between two species complexes of Daphnia in four environments. The environments were defined by large differences in food and temperature, two factors known to influence senescence. The species studied were chosen to represent sister species that likely experience divergent (D. pulex and D. pulicaria) or similar (D. mendotate and D. dentifera) selection pressures on senescence. Overall, D. pulex expressed the greatest demographic senescence, D. mendotae and D. dentifera were intermediate, and D. pulicaria expressed the least. In environments representative of typical natural conditions, D. pulex had greater senescence than D. pulicaria, regardless of how late-life performance was assessed. This shows that genetic-environment interactions do not confound the interpretation of senescence differences between these species as the result of selective differences between their habitats. Comparison of D. mendotae and D. dentifera primarily revealed similar life histories, although differences in reproductive declines occurred in some environments. The joint observation of similar mortality patterns but dissimilar fecundity declines suggests that the trade-off between survival and reproduction changes with age. This calls into question the utility of only studying mortality for understanding evolutionary change of senescence in nature.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号