首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   522篇
  免费   29篇
  2023年   2篇
  2021年   2篇
  2019年   6篇
  2018年   8篇
  2017年   5篇
  2016年   10篇
  2015年   25篇
  2014年   24篇
  2013年   30篇
  2012年   25篇
  2011年   26篇
  2010年   33篇
  2009年   32篇
  2008年   22篇
  2007年   22篇
  2006年   19篇
  2005年   21篇
  2004年   28篇
  2003年   15篇
  2002年   11篇
  2001年   19篇
  2000年   6篇
  1999年   8篇
  1998年   13篇
  1997年   11篇
  1996年   4篇
  1995年   8篇
  1994年   5篇
  1993年   11篇
  1992年   3篇
  1991年   5篇
  1990年   3篇
  1989年   4篇
  1988年   7篇
  1987年   3篇
  1986年   3篇
  1985年   5篇
  1984年   8篇
  1983年   4篇
  1982年   18篇
  1981年   4篇
  1980年   3篇
  1979年   3篇
  1978年   2篇
  1977年   5篇
  1976年   3篇
  1975年   5篇
  1971年   4篇
  1968年   1篇
  1966年   2篇
排序方式: 共有551条查询结果,搜索用时 15 毫秒
1.
2.
3.
4.
In vivo electrophysiological recordings from populations of olfactory receptor neurons in the channel catfish, Ictalurus punctatus, clearly showed that responses to binary and trinary mixtures of amino acids were predictable with knowledge obtained from previous cross-adaptation studies of the relative independence of the respective binding sites of the component stimuli. All component stimuli, from which equal aliquots were drawn to form the mixtures, were adjusted in concentration to provide for approximately equal response magnitudes. The magnitude of the response to a mixture whose component amino acids showed significant cross-reactivity was equivalent to the response to any single component used to form that mixture. A mixture whose component amino acids showed minimal cross-adaptation produced a significantly larger relative response than a mixture whose components exhibited considerable cross-reactivity. This larger response approached the sum of the responses to the individual component amino acids tested at the resulting concentrations in the mixture, even though olfactory receptor dose-response functions for amino acids in this species are characterized by extreme sensory compression (i.e., successive concentration increments produce progressively smaller physiological responses). Thus, the present study indicates that the response to sensory stimulation of olfactory receptor sites is more enhanced by the activation of different receptor site types than by stimulus interaction at a single site type.  相似文献   
5.
6.
The phylogeny of Greya Busck (Lepidoptera: Prodoxidae) was inferred from nucleotide sequence variation across a 765-bp region in the cytochrome oxidase I and II genes of the mitochondrial genome. Most parsimonious relationships of 25 haplotypes from 16 Greya species and two outgroup genera (Tetragma and Prodoxus) showed substantial congruence with the species relationships indicated by morphological variation. Differences between mitochondrial and morphological trees were found primarily in the positions of two species, G. variabilis and G. pectinifera, and in the branching order of the three major species groups in the genus. Conflicts between the data sets were examined by comparing levels of homoplasy in characters supporting alternative hypotheses. The phylogeny of Greya species suggests that host-plant association at the family level and larval feeding mode are conservative characters. Transition/transversion ratios estimated by reconstruction of nucleotide substitutions on the phylogeny had a range of 2.0-9.3, when different subsets of the phylogeny were used. The decline of this ratio with the increase in maximum sequence divergence among taxa indicates that transitions are masked by transversions along deeper internodes or long branches of the phylogeny. Among transitions, substitutions of A-->G and T-->C outnumbered their reciprocal substitutions by 2-6 times, presumably because of the approximately 4:1 (77%) A+T-bias in nucleotide base composition. Of all transversions, 73%-80% were A<-->T substitutions, 85% of which occurred at third positions of codons; these estimates did not decrease with an increase in maximum sequence divergence of taxa included in the analysis. The high frequency of A<-->T substitutions is either a reflection or an explanation of the 92% A+T bias at third codon positions.   相似文献   
7.
This communication examines the possibility that nitric oxide (NO) production by endothelial cells results from changes in cell membrane fluidity. Lysophosphatidylcholine (LPC) alters fluidity of the endothelial cell membranes causing vascular relaxation. Through membrane alterations LPC influences function of a number of membrane receptors and modulates enzyme activity. As a result of detergent action, lysophosphatidylcholine (LPC) causes activation of guanylate cyclase, stimulates syalytransferase and regulates protein kinase C activity. It has already been demonstrated that ionic detergents, such as Triton X-100 also cause vascular relaxation, possibly induced by NO production from endothelial cells. It is postulated that production of nitric oxide results from changes in membrane viscosity; this may represent a mechanism for its regulation in biological systems.  相似文献   
8.
Previous work has shown that the GABAA-receptor (GABAA-R) could be phosphorylated by cAMP-dependent protein kinase (PKA), protein kinase C (PKC), and a receptor associated kinase. However, no clear picture has yet emerged concerning the particular subunit subtypes of the GABAA-R that were phosphorylated by PKA and PKC. In the present report we show that an antibody raised against a 23 amino acid polypeptide corresponding to a sequence in the putative intracellular loop of the 1 subunit of the receptor blocks the in vitro phosphorylation of the purified receptor by PKA and PKC. Moreover, N-terminal sequence analysis of the principal phosphopeptide fragment obtained after proteolysis of the receptor yielded a sequence that corresponds to the 3 subunit of the receptor. Such data provide additional support for our hypothesis (Browning et al., 1990, Proc. Natl. Acad. Sci. USA 87:1315–1317) that both PKA and PKC phosphorylate the -subunit of the GABAA-R.Special issue dedicated to Dr. Paul Greengard.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号