首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   64篇
  免费   7篇
  2020年   1篇
  2018年   1篇
  2014年   1篇
  2012年   1篇
  2011年   5篇
  2010年   2篇
  2008年   5篇
  2007年   3篇
  2006年   1篇
  2005年   1篇
  2004年   2篇
  2001年   4篇
  2000年   2篇
  1999年   2篇
  1998年   4篇
  1997年   1篇
  1996年   2篇
  1995年   3篇
  1993年   3篇
  1992年   1篇
  1991年   4篇
  1990年   5篇
  1989年   2篇
  1988年   1篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1977年   1篇
  1976年   2篇
  1975年   1篇
  1972年   2篇
  1970年   2篇
  1968年   1篇
排序方式: 共有71条查询结果,搜索用时 15 毫秒
1.
Little is known about the primary amino acid structure of human cartilage link protein (CRTL1). We screened a human genomic library with a cDNA encoding the 3' untranslated region and the adjoining B1 domain of chicken link protein. One clone was isolated and characterized. A 3.5-kb EcoRI-KpnI fragment from this genomic clone that contains the human B1 exon was used to map the gene to chromosome 5q13----q14.1. The same fragment was used to screen a cDNA library prepared from mRNA of Caco-2, a human colon tumor cell line. Two overlapping clones were isolated and shown to encode all of CRTL1. The deduced amino acid sequence is 354 residues long. The amino acid sequence shows a striking degree of identity to the porcine (96%), rat (96%), and chicken (85%) link protein sequences. Furthermore, there is greater than 86% homology between the 3' untranslated region of the genes encoding human and porcine link proteins. These results indicate that there has been strong evolutionary pressure against changes in the coding and 3' untranslated regions of the gene encoding cartilage link protein.  相似文献   
2.
Oxytocin (10 mi.u./microliter/h) or vehicle (0.5% chlorobutanol in saline, 1 microliter/h) was chronically infused directly into the corpus luteum of normally cyclic rhesus monkeys, by means of an Alzet pump-ovarian cannula system. Infusion of oxytocin (N = 6) or vehicle (N = 5) began 6 days after the preovulatory oestradiol surge, and daily peripheral blood samples were taken. Oxytocin caused a significant (P less than 0.05) decrease in progesterone, beginning 1 day after treatment, and oestradiol after 4 days; progesterone and oestradiol remained significantly depressed until menstruation. However, peripheral LH concentrations remained unchanged. The duration of the luteal phase, menstrual cycle and the onset of menses from the initiation of oxytocin infusion were significantly (P less than 0.01) shorter when compared to those of vehicle-treated controls. These results show that oxytocin can induce functional luteolysis in the primate and supports the hypothesis that oxytocin of luteal origin may play a role in spontaneous luteolysis.  相似文献   
3.
4.
Immunoglobulins are encoded by a large multigene system that undergoes somatic rearrangement and additional genetic change during the development of immunoglobulin-producing cells. Inducible antibody and antibody-like responses are found in all vertebrates. However, immunoglobulin possessing disulfide-bonded heavy and light chains and domain-type organization has been described only in representatives of the jawed vertebrates. High degrees of nucleotide and predicted amino acid sequence identity are evident when the segmental elements that constitute the immunoglobulin gene loci in phylogenetically divergent vertebrates are compared. However, the organization of gene loci and the manner in which the independent elements recombine (and diversify) vary markedly among different taxa. One striking pattern of gene organization is the "cluster type" that appears to be restricted to the chondrichthyes (cartilaginous fishes) and limits segmental rearrangement to closely linked elements. This type of gene organization is associated with both heavy- and light-chain gene loci. In some cases, the clusters are "joined" or "partially joined" in the germ line, in effect predetermining or partially predetermining, respectively, the encoded specificities (the assumption being that these are expressed) of the individual loci. By relating the sequences of transcribed gene products to their respective germ-line genes, it is evident that, in some cases, joined-type genes are expressed. This raises a question about the existence and/or nature of allelic exclusion in these species. The extensive variation in gene organization found throughout the vertebrate species may relate directly to the role of intersegmental (V<==>D<==>J) distances in the commitment of the individual antibody-producing cell to a particular genetic specificity. Thus, the evolution of this locus, perhaps more so than that of others, may reflect the interrelationships between genetic organization and function.   相似文献   
5.
Mitochondrial mutants of the green alga Chlamydomonas reinhardtii that are inactivated in the cytochrome pathway of respiration have previously been isolated. Despite the fact that the alternative oxidase pathway is still active the mutants have lost the capacity to grow heterotrophically (dark + acetate) and display reduced growth under mixotrophic conditions (light + acetate). In crosses between wild-type and mutant cells, the meiotic progeny only inherit the character transmitted by the mt parent, which indicates that the mutations are located in the 15.8 kb linear mitochondrial genome. Two new mutants (dum-18 and dum-19) have now been isolated and characterized genetically, biochemically and at the molecular level. In addition, two previously isolated mutants (dum-11 and dum-15) were characterized in more detail. dum-11 contains two types of deleted mitochondrial DNA molecules: 15.1 kb monomers lacking the subterminal part of the genome, downstream of codon 147 of the apocytochrome b (COB) gene, and dimers resulting from head-to-head fusion of asymmetrically deleted monomers (15.1 and 9.5 kb DNA molecules, respectively). As in the wild type, the three other mutants contain only 15.8 kb mitochondrial DNA molecules. dum-15 is mutated at codon 140 of the COB gene, a serine (TCT) being changed into a tyrosine (TAC). dum-18 and dum-19 both inactivate cytochrome c oxidase, as a result of frameshift mutations (addition or deletion of 1 bp) at codons 145 and 152, respectively, of the COX1 gene encoding subunit I of cytochrome c oxidase. In a total of ten respiratory deficient mitochondrial mutants characterized thus far, only mutations located in COB or COXI have been isolated. The possibility that the inactivation of the other mitochondrial genes is lethal for the cells is discussed.  相似文献   
6.
Lefebvre B  Batoko H  Duby G  Boutry M 《The Plant cell》2004,16(7):1772-1789
The structural determinants involved in the targeting of multitransmembrane-span proteins to the plasma membrane (PM) remain poorly understood. The plasma membrane H+ -ATPase (PMA) from Nicotiana plumbaginifolia, a well-characterized 10 transmembrane-span enzyme, was used as a model to identify structural elements essential for targeting to the PM. When PMA2 and PMA4, representatives of the two main PMA subfamilies, were fused to green fluorescent protein (GFP), the chimeras were shown to be still functional and to be correctly and rapidly targeted to the PM in transgenic tobacco. By contrast, chimeric proteins containing various combinations of PMA transmembrane spanning domains accumulated in the Golgi apparatus and not in the PM and displayed slow traffic properties through the secretory pathway. Individual deletion of three of the four cytosolic domains did not prevent PM targeting, but deletion of the large loop or of its nucleotide binding domain resulted in GFP fluorescence accumulating exclusively in the endoplasmic reticulum. The results show that, at least for this polytopic protein, the PM is not the default pathway and that, in contrast with single-pass membrane proteins, cytosolic structural determinants are required for correct targeting.  相似文献   
7.
8.
Regulatory 14-3-3 proteins activate the plant plasma membrane H(+)-ATPase by binding to its C-terminal autoinhibitory domain. This interaction requires phosphorylation of a C-terminal, mode III, recognition motif as well as an adjacent span of approximately 50 amino acids. Here we report the X-ray crystal structure of 14-3-3 in complex with the entire binding motif, revealing a previously unidentified mode of interaction. A 14-3-3 dimer simultaneously binds two H(+)-ATPase peptides, each of which forms a loop within the typical 14-3-3 binding groove and therefore exits from the center of the dimer. Several H(+)-ATPase mutants support this structure determination. Accordingly, 14-3-3 binding could result in H(+)-ATPase oligomerization. Indeed, by using single-particle electron cryomicroscopy, the 3D reconstruction of the purified H(+)-ATPase/14-3-3 complex demonstrates a hexameric arrangement. Fitting of 14-3-3 and H(+)-ATPase atomic structures into the 3D reconstruction map suggests the spatial arrangement of the holocomplex.  相似文献   
9.
Classical quantitative trait loci (QTL) analysis and gene expression QTL (eQTL) were combined to identify the causal gene (or QTG) underlying a highly significant QTL controlling the variation of breast meat color in a F2 cross between divergent high-growth (HG) and low-growth (LG) chicken lines. Within this meat quality QTL, BCMO1 (Accession number GenBank: AJ271386), encoding the β-carotene 15, 15'-monooxygenase, a key enzyme in the conversion of β-carotene into colorless retinal, was a good functional candidate. Analysis of the abundance of BCMO1 mRNA in breast muscle of the HG x LG F2 population allowed for the identification of a strong cis eQTL. Moreover, reevaluation of the color QTL taking BCMO1 mRNA levels as a covariate indicated that BCMO1 mRNA levels entirely explained the variations in meat color. Two fully-linked single nucleotide polymorphisms (SNP) located within the proximal promoter of BCMO1 gene were identified. Haplotype substitution resulted in a marked difference in BCMO1 promoter activity in vitro. The association study in the F2 population revealed a three-fold difference in BCMO1 expression leading to a difference of 1 standard deviation in yellow color between the homozygous birds at this haplotype. This difference in meat yellow color was fully consistent with the difference in carotenoid content (i.e. lutein and zeaxanthin) evidenced between the two alternative haplotypes. A significant association between the haplotype, the level of BCMO1 expression and the yellow color of the meat was also recovered in an unrelated commercial broiler population. The mutation could be of economic importance for poultry production by making possible a gene-assisted selection for color, a determining aspect of meat quality. Moreover, this natural genetic diversity constitutes a new model for the study of β-carotene metabolism which may act upon diverse biological processes as precursor of the vitamin A.  相似文献   
10.
Classical quantitative trait loci (QTL) analysis and gene expression QTL (eQTL) were combined to identify the causal gene (or QTG) underlying a highly significant QTL controlling the variation of breast meat color in a F2 cross between divergent high-growth (HG) and low-growth (LG) chicken lines. Within this meat quality QTL, BCMO1 (Accession number GenBank: AJ271386), encoding the β-carotene 15, 15′-monooxygenase, a key enzyme in the conversion of β-carotene into colorless retinal, was a good functional candidate. Analysis of the abundance of BCMO1 mRNA in breast muscle of the HG x LG F2 population allowed for the identification of a strong cis eQTL. Moreover, reevaluation of the color QTL taking BCMO1 mRNA levels as a covariate indicated that BCMO1 mRNA levels entirely explained the variations in meat color. Two fully-linked single nucleotide polymorphisms (SNP) located within the proximal promoter of BCMO1 gene were identified. Haplotype substitution resulted in a marked difference in BCMO1 promoter activity in vitro. The association study in the F2 population revealed a three-fold difference in BCMO1 expression leading to a difference of 1 standard deviation in yellow color between the homozygous birds at this haplotype. This difference in meat yellow color was fully consistent with the difference in carotenoid content (i.e. lutein and zeaxanthin) evidenced between the two alternative haplotypes. A significant association between the haplotype, the level of BCMO1 expression and the yellow color of the meat was also recovered in an unrelated commercial broiler population. The mutation could be of economic importance for poultry production by making possible a gene-assisted selection for color, a determining aspect of meat quality. Moreover, this natural genetic diversity constitutes a new model for the study of β-carotene metabolism which may act upon diverse biological processes as precursor of the vitamin A.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号