首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
  2014年   1篇
  2013年   1篇
  2012年   2篇
  2010年   1篇
  1995年   1篇
  1992年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
The purpose of this investigation was to investigate pathomechanisms responsible for the deleterious effects of repeated episodes of brief forebrain ischemia. Halothane-anesthetized male Wistar rats were subjected to either (a) a single 15-min period or (b) three 5-min periods (separated by 1 h) of global forebrain ischemia by bilateral carotid artery occlusions plus hypotension (50 mm Hg), followed by various periods of recirculation. Brain temperature was normothermic throughout. In one series of rats, extracellular levels of glutamate, glycine, and gamma-aminobutyric acid (GABA) were measured in the dorsolateral striatum (n = 6-8 per group) and lateral thalamus (n = 4-6 per group) by microdialysis and HPLC before and during ischemia and during 3-5 h of recirculation. In a parallel series of rats (n = 6 per group), ischemic cell change was quantified at 2 (dark neurons), 24, or 72 h following either single or multiple ischemic insults. A single 15-min ischemic period led to massive glutamate release (13-fold increase; p = 0.001), which returned to normal by 20-30 min of recirculation and remained normal thereafter. By contrast, in rats with three 5-min periods of ischemia, the glutamate level rise with each repeated insult (four- to 4.5-fold; p < or = 0.02) was smaller than that observed during the single 15-min insult, but a late sustained rise (five- to six-fold; p < 0.05) occurred at 2-3 h of recirculation. Brief ischemia-induced elevations of glycine and GABA levels were detected in both the single- and multiple-insult groups, with normalization during recirculation. In contrast, the excitotoxic index, a composite measure of neurotransmitter release ([glutamate] x [glycine]/[GABA]), differed markedly following single versus multiple insults (p = 0.002 by repeated-measures analysis of variance) and increased by seven- to 12-fold (p < 0.05) at 1-3 h following the third insult. The total amount of glutamate released was 3.3-fold higher in the multiple-insult than in the single-insult group (p < 0.02). At 2 h of recirculation, histopathological analysis of dorsolateral striatum showed a significantly greater frequency of dark neurons in the multiple- than in the single-insult group (p < 0.05 by analysis of variance). In the thalamus, a higher frequency of ischemic neurons was seen in the multiple-than in the single-insult group at all intervals studied. Thus, in rats with multiple ischemic insults, accelerated ischemic damage was found in the striatum, and severe ischemic injury was documented in the thalamus.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   
2.
Nanoparticles may be taken up into cells via endocytotic processes whereby the foreign particles are encapsulated in vesicles formed by lipid bilayers. After uptake into these endocytic vesicles, intracellular targeting processes and vesicle fusion might cause transfer of the vesicle cargo into other vesicle types, e.g., early or late endosomes, lysosomes, or others. In addition, nanoparticles might be taken up as single particles or larger agglomerates and the agglomeration state of the particles might change during vesicle processing. In this study, liposomes are regarded as simple models for intracellular vesicles. We compared the energetic balance between two liposomes encapsulating each a single silica nanoparticle and a large liposome containing two silica nanoparticles. Analytical expressions were derived that show how the energy of the system depends on the particle size and the distance between the particles. We found that the electrostatic contributions to the total energy of the system are negligibly small. In contrast, the van der Waals term strongly favors arrangements where the liposome snugly fits around the nanoparticle(s). Thus the two separated small liposomes have a more favorable energy than a larger liposome encapsulating two nanoparticles.  相似文献   
3.
Purpose of the present study was the generation and evaluation of novel thiolated chitosans, so-named S-protected thiolated chitosans as mucosal drug delivery systems. Stability of all conjugates concerning swelling and disintegration behavior as well as drug release was examined. Mucoadhesive properties were evaluated in vitro on intestinal mucosa. Different thiolated chitosans were generated displaying increasing amounts of attached free thiol groups on the polymer, whereby more than 50% of these thiol groups were linked with 6-mercaptonicotinamide. Based on the implementation of this hydrophobic residue, the swelling behavior was 2-fold decreased, whereas stability was essentially improved. Their mucoadhesive properties were 2- and 14-fold increased compared to corresponding thiolated and unmodified chitosans, respectively. Release studies out of matrix tablets comprising the novel conjugates revealed a controlled release of a model peptide. Accordingly, S-protected thiomers represent a promising type of mucoadhesive polymers for the development of various mucosal drug delivery systems.  相似文献   
4.
Due to the large number of possible applications of nanoparticles in cosmetic and medical products, the possible hazards of nanoparticles in the human body are a major concern. A worst-case scenario is that nanoparticles might cause health issues such as skin damage or even induce cancer. As a first step to study the toxicity of nanoparticles, we investigate the energy behaviour of a C60 fullerene interacting with a lipid bilayer. Using the 6–12 Lennard-Jones potential function and the continuous approximation, the equilibrium spacing between the two layers of a bilayer is predicted to be 3.36 ?. On assuming that there is a circular hole in the lipid bilayer, a relation for the molecular interaction energy is determined, involving the circular radius b of the hole and the perpendicular distance Z of the spherical fullerene from the hole. A graph of the minimum energy location Z min verses the hole radius b shows that a C60 fullerene first penetrates through a lipid bilayer when b > 6.81 ?, and shows a simple circular relation \textZmin2 + b2 = 6.812 {\text{Z}}_{{\min }}^2 + {b^{{2}}} = {6}.{8}{{1}^{{2}}} for Z min positive and b ≤ 6.81 ?. For b > 6.81, the fullerene relocates from the surface of the bilayer to the interior, and as the hole radius increases further it moves to the centre of the bilayer and remains there for increasing hole radii. Accordingly, our modelling indicates that at least for the system with no external forces, the C60 fullerene will not penetrate through the lipid bilayer but rather remains encased between the two layers at the mid-plane location.  相似文献   
5.
The aim of this study was to evaluate the impact of various vehicles on mucoadhesive properties of thiolated chitosan nanoparticles both in vitro and in vivo. Nanoparticles (NPs) were prepared by in situ gelation technique followed by labeling with fluorescein diacetate. Comparative studies on mucoadhesion were done with these thiolated chitosan NPs and unmodified chitosan NPs (control). The obtained nanoparticles displayed a mean diameter of 164.2 ± 6.9 nm and a zeta potential of 21.5 ± 5 mV. In an in vitro adhesion study, unhydrated thiolated NPs adhered strongly to freshly excised porcine small intestine, which was more than threefold increase compared to the control. In contrast, in the presence of various vehicles (PEG 300, miglyol 840, PEG 6000, cremophor EL, and caprylic triglyceride), the mucoadhesive properties of thiolated NPs were comparatively weak. Thiolated NPs suspended in caprylic triglyceride, for example, had a percent mucoadhesion of 22.50 ± 5.35% on the mucosa. Furthermore, results from in vivo mucoadhesion studies revealed that the dry form of nanoparticles exhibits the strongest mucoadhesion, followed by nanoparticles suspended in PEG 300, miglyol, and 100 mM phosphate buffer, in that order. Three hours after administration, the gastrointestinal residence time of the dry form of thiolated NPs was up to 3.6-fold prolonged. These findings should contribute to the design of highly effective oral mucoadhesive nanoparticulate drug delivery systems.  相似文献   
6.
Abstract: To obtain direct evidence of oxygen radical activity in the course of cerebral ischemia under different intraischemic temperatures, we used a method based on the chemical trapping of hydroxyl radical in the form of the stable adducts 2,3- and 2,5-dihydroxybenzoic acid (DHBA) following salicylate administration. Wistar rats were subjected to 20 min of global forebrain ischemia by two-vessel occlusion plus systemic hypotension (50 mm Hg). Intraischemic striatal temperature was maintained as normothermic (37°C), hypothermic (30°C), or hyperthermic (39°C) but was held at 37°C before and following ischemia. Salicylate was administered either systemically (200 mg/kg, i.p.) or by continuous infusion (5 mM) through a microdialysis probe implanted in the striatum. Striatal extracellular fluid was sampled at regular intervals before, during, and after ischemia, and levels of 2,3- and 2,5-DHBA were assayed by HPLC with electrochemical detection. Following systemic administration of salicylate, stable baseline levels of 2,3- and 2,5-DHBA were observed before ischemia. During 20 min of normothermic ischemia, a 50% reduction in mean levels of both DHBAs was documented, suggesting a baseline level of hydroxyl radical that was diminished during ischemia, presumably owing to oxygen restriction to tissue at that time. During recirculation, 2,3- and 2,5-DHBA levels increased by 2.5- and 2.8-fold, respectively. Levels of 2,3-DHBA remained elevated during 1 h of reperfusion, whereas the increase in 2,5-DHBA levels persisted for 2 h. The increases in 2,3- and 2,5-DHBA levels observed following hyperthermic ischemia were significantly higher (3.8- and fivefold, respectively). In contrast, no significant changes in DHBA levels were observed following hypothermic ischemia. The postischemic changes in DHBA content observed following local administration of salicylate were comparable to the results obtained with systemic administration, thus confirming that the hydroxyl radicals arose within brain parenchyma itself. These results provide evidence that hydroxyl radical levels are increased during postischemic recirculation, and this process is modulated by intraischemic brain temperature. Hence, these data suggest a possible mechanism for the effects of temperature on ischemic outcome and support a key role for free radical-induced injury in the development of ischemic damage.  相似文献   
7.
Intra-arterial (IA) delivery of mesenchymal stem cells (MSCs) for acute ischemic stroke is attractive for clinical translation. However, studies using rat model of stroke have demonstrated that IA MSCs delivery can decrease middle cerebral artery (MCA) flow, which may limit its clinical translation. The goal of this study is to identify a dose of IA MSCs (maximum tolerated dose; MTD) that does not compromise MCA flow and evaluate its efficacy and optimal timing in a rat model of reversible middle cerebral artery occlusion (rMCAo). We sought to determine if there is a difference in efficacy of acute (1 h) versus sub-acute (24 h) IA MSCs treatment after rMCAo. Adult female Sprague-Dawley rats underwent rMCAo (90 min) and an hour later a single dose of MSCs (at de-escalating doses 1×106, 5×105, 2×105, 1×105 and 5×104) was given using IA route. MSCs were suspended in phosphate buffered saline (PBS) and PBS alone was used for control experiments. We measured the percent change in mean laser Doppler flow signal over the ipsilateral MCA in de-escalating doses groups to determine MTD. The results demonstrated that the lowering of IA MSC dose to 1×105 and below did not compromise MCA flow and hence an IA MSC dose of 1×105 considered as MTD. Subsequently, 1 h and 24 h after rMCAo, rats were treated with IA MSCs or PBS. The 24 h delivery of IA MSCs significantly improved neurodeficit score and reduced the mean infarct volume at one month as compared to control, but not the 1 h delivery. Overall, this study suggests that the IA delivery of MSCs can be performed safely and efficaciously at the MTD of 1×105 delivered at 24 hours in rodent model of stroke.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号