首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31篇
  免费   3篇
  34篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2011年   3篇
  2006年   2篇
  2004年   1篇
  2003年   2篇
  2001年   2篇
  2000年   2篇
  1998年   1篇
  1994年   1篇
  1991年   3篇
  1988年   3篇
  1986年   1篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1979年   2篇
  1977年   2篇
  1976年   1篇
排序方式: 共有34条查询结果,搜索用时 15 毫秒
1.
2.
The action of purified rheumatoid synovial collagenase and human neutrophil elastase on the cartilage collagen types II, IX, X and XI was examined. At 25 degrees C, collagenase attacked type II and type X (45-kDa pepsin-solubilized) collagens to produce specific products reflecting one and at least two cleavages respectively. At 35 degrees C, collagenase completely degraded the type II collagen molecule to small peptides whereas a large fragment of the type X molecule was resistant to further degradation. In contrast, collagen type IX (native, intact and pepsin-solubilized type M) and collagen type XI were resistant to collagenase attack at both 25 degrees C and 35 degrees C even in the presence of excess enzyme. Mixtures of type II collagen with equimolar amounts of either type IX or XI did not affect the rate at which the former was degraded by collagenase at 25 degrees C. Purified neutrophil elastase, shown to be functionally active against soluble type III collagen, had no effect on collagen type II at 25 degrees C or 35 degrees C. At 25 degrees C collagen types IX (pepsin-solubilized type M) and XI were also resistant to elastase, but at 35 degrees C both were susceptible to degradation with type IX being reduced to very small peptides. Collagen type X (45-kDa pepsin-solubilized) was susceptible to elastase attack at 25 degrees C and 35 degrees C as judged by the production of specific products that corresponded closely with those produced by collagenase. Although synovial collagenase failed to degrade collagen types IX and XI, all the cartilage collagen species examined were degraded at 35 degrees C by conditioned culture medium from IL1-activated human articular chondrocytes. Thus chondrocytes have the potential to catabolise each cartilage collagen species, but the specificity and number of the chondrocyte-derived collagenase(s) has yet to be resolved.  相似文献   
3.
4.
Blain EJ  Mason DJ  Duance VC 《Biorheology》2003,40(1-3):111-117
Osteoarthritis (OA) develops as a consequence of articular cartilage degeneration possibly initiated by excessive or abnormal loading of the joint, and potentially mediated through a proteinase/proteinase inhibitor imbalance. We have shown previously that physiological loads (0.5 MPa, 1 Hz, 3 hour) elicit increased expression and activation of the matrix metalloproteinases (MMPs) in articular cartilage explants in vitro. The objective of this study was to identify mechanically-regulated genes involved in the observed induction of MMP expression and enhanced activation. Differential RNA Display (DRD) was used to identify mechanically-regulated genes by comparing DRD products derived from loaded and unloaded cartilage. One gene up-regulated in cartilage after 10, 30 and 60 minute loading revealed 83% homology with Mus musculus thymosin beta_4 which is known to induce MMP gene expression. The identification of mechanically regulated genes will greatly enhance our understanding of matrix turnover providing an exciting future in elucidating the role of mechanically-regulated genes in the development of OA.  相似文献   
5.
Fibrillin-rich microfibrils are important structural elements widespread throughout connective tissues. Genetic defects identified in the Ca(2+) binding sites of fibrillin have severe effects and in addition Ca(2+) has a marked effect on the microfibrillar structure. We have studied the role of Ca(2+) on the mechanical behavior of fibrillin-rich microfibrils using the micro-needle technique. We find that Ca(2+)-depletion results in a 50% decrease in rest length and reduces the stiffness of fibrillin-rich microfibrils. At high strain, irreversible damage occurs. This behavior is consistent with Ca(2+) stabilization of interactions between consecutive EGF-like domains and breakdown in the quaternary structure upon over-extension.  相似文献   
6.

Introduction  

Articular cartilage functions in withstanding mechanical loads and provides a lubricating surface for frictionless movement of joints. Osteoarthritis, characterised by cartilage degeneration, develops due to the progressive erosion of structural integrity and eventual loss of functional performance. Osteoarthritis is a multi-factorial disorder; two important risk factors are abnormal mechanical load and genetic predisposition. A single nucleotide polymorphism analysis demonstrated an association of hip osteoarthritis with an Arg324Gly substitution mutation in FrzB, a Wnt antagonist. The purpose of this study was two-fold: to assess whether mechanical stimulation modulates β-catenin signalling and catabolic gene expression in articular chondrocytes, and further to investigate whether there is an interplay of mechanical load and Wnt signalling in mediating a catabolic response.  相似文献   
7.
8.
Type IX collagen is covalently bound to the surface of type II collagen fibrils within the cartilage extracellular matrix. The N-terminal, globular noncollagenous domain (NC4) of the α1(IX) chain protrudes away from the surface of the fibrils into the surrounding matrix and is available for molecular interactions. To define these interactions, we used the NC4 domain in a yeast two-hybrid screen of a human chondrocyte cDNA library. 73% of the interacting clones encoded fibronectin. The interaction was confirmed using in vitro immunoprecipitation and was further characterized by surface plasmon resonance. Using whole and pepsin-derived preparations of type IX collagen, the interaction was shown to be specific for the NC4 domain with no interaction with the triple helical collagenous domains. The interaction was shown to be of high affinity with nanomolar Kd values. Analysis of the fibronectin-interacting clones indicates that the constant domain is the likely site of interaction. Type IX collagen and fibronectin were shown to co-localize in cartilage. This novel interaction between the NC4 domain of type IX collagen and fibronectin may represent an in vivo interaction in cartilage that could contribute to the matrix integrity of the tissue.  相似文献   
9.
Type III collagen in the intervertebral disc.   总被引:1,自引:0,他引:1  
Several collagen types have now been isolated from the intervertebral disc, although type III collagen has previously only been extracted from human pathological disc. In this study, type III collagen has been isolated from normal human and bovine intervertebral disc and immunolocalized in sections of rat, sheep, bovine and 'normal' human intervertebral disc of various ages. Staining with antisera to type III collagen is localized primarily around the cells. Results indicate that cells of the disc sit in 'chondrons', similar to those seen in the deep and mid zones of articular cartilage. We suggest that type III collagen is present in the intervertebral disc and hypothesize that it may be involved in the organization of the pericellular environment, perhaps linking the chondron capsule to the interterritorial matrix.  相似文献   
10.
Isolation and characterization of the precursor of type M collagen.   总被引:3,自引:2,他引:1       下载免费PDF全文
A 225000-Mr peptide has been purified from rat chondrosarcoma which is immunologically and biochemically related to type M collagen. Rotary shadowing shows this molecule to be twice the length of the type M molecule and has a prominent kink close to one end. We believe this molecule represents parent type M, the form of the molecule in vivo.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号