首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   83篇
  免费   4篇
  2019年   1篇
  2018年   1篇
  2017年   3篇
  2016年   1篇
  2015年   5篇
  2014年   4篇
  2013年   5篇
  2012年   6篇
  2011年   2篇
  2010年   6篇
  2009年   6篇
  2008年   4篇
  2007年   2篇
  2006年   4篇
  2005年   4篇
  2004年   2篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  1998年   3篇
  1997年   2篇
  1996年   2篇
  1995年   2篇
  1994年   2篇
  1993年   2篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1987年   1篇
  1986年   1篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
  1980年   2篇
  1977年   1篇
  1955年   1篇
排序方式: 共有87条查询结果,搜索用时 203 毫秒
1.
Summary Early development of Platynereis massiliensis was studied in serial sections of fixed embryos and in living or fixed embryos whose nuclei had been made visible with a fluorescent label. The unfertilized egg is an ellipsoid with three axes of differing length. The longest axis corresponds to the dorsoventral axis of the developing embryo. Egg volume is ten times that in the sibling species, P. dumerilii, mainly due to increased yolk content. The timing and spatial pattern of cleavage were observed from first cleavage to the 62-cell stage. Volumes of the blastomeres, their nuclei, their yolk-free cytoplasm and their yolk were determined from serial sections up to the 29-cell stage. In the P. massiliensis embryo, cell cycles are on average 3.7 times longer than in P. dumerilii; volume proportions among the blastomeres also differ and the macromeres containing the bulk of yolk are particularly large, but otherwise the cleavage patterns, differential segregation of yolk and yolk-free cytoplasm, and the histogenetic fates of the blastomeres are the same as in P. dumerilii. This equivalence of cell lineage and of cytoplasmic segregation mechanisms in both species, maintained in spite of the different appearance of the embryos, suggests functional importance of and selective constraint on these developmental features. The relatively accelerated divisions of the 2d cell line in P. massiliensis may be interpreted as the precocious development of cell lines which give rise to adult structures. Several structures, obviously functional in developing P. dumerilii, have lost their function in P. massiliensis: the egg contains few cortical granules, giving rise to only a moderate egg jelly layer in the zygote; prototroch cells develop cilia, but the heavy embryo is unable to swim; the larva develops three pairs of parapodia but, unlike the corresponding stage in P. dumerilii, is not capable of coordinate locomotion. This loss of motility is related to the brooding habit of the species developing inside the parental tube and is explained as the result of a switch from pelagic to benthic, protected reproduction in P. massiliensis. Offprint requests to: A.W.C. Dorresteijn  相似文献   
2.
Billingen (Lower Arenig/Lower Ordovician) sediments of the St. Petersburg region, northwest Russia and the Leba area, northern Poland of the East European Craton yield acritarch assemblages, which are largely homogenous though displaying minor compositional differences that probably reflect a gradient from inner to outer shelf environments. Comparison with coeval acritarch microflora from the Yangtze Platform, South China, shows an overall similarity between Baltoscandian and South Chinese phytoplankton. The widespread uniformity in the fossil microphytoplankton may be related to the extensive global 'evae' sea-level transgression, which characterized the Billingen time. This suggests that during the Tremadoc through early Arenig times, acritarch assemblages displayed essentially an undifferentiated cold-water and oceanic character along the whole margin of Perigondwana in the South, as well as on the South Chinese and Baltic platforms, at middle latitudes (Mediterranean oceanic Realm). Despite this overall similarity, however, some typical taxa of the high-latitude Mediterranean Province (Arbusculidium, Coryphidium and Striatotheca) occur in South China, but are absent in Baltica. This discrepancy is explained as caused by differences in climatic and physiographic conditions that prevailed at the two palaeocontinents at this time. The inferred pattern of oceanic circulation during the Lower Ordovician is consistent with the palynological evidence of a prevailing warmer climate in Baltica than in South China, although the two palaeocontinents occupied the same palaeolatitudinal position.  相似文献   
3.
The presence of gap junctions has been examined up to the sixth cleavage in the early Patella embryo. Gap junctions are located all over the blastomere borders. In 2-, 4-, and 8-cell embryos they were also observed at peripheral contacts. The frequency and size of the gap junctions increase at the 32-cell stage. The structure of gap junctions is similar in all stages investigated with hexagonally arranged equal-sized particles (11 nm) having a constant center-to-center spacing (13.0 nm). At the 32-cell stage formation plaques were observed, indicating an increase of gap junctions.  相似文献   
4.
Abstract: A systematic account of highly diverse cyrtocrinid faunules from Upper Jurassic strata of ?tramberk type (Oxfordian–Tithonian) in southern Poland (Polish Carpathians) is presented. Fourteen taxa (Phyllocrinus malbosianus, Ph. stellaris, Ph. sp., Psalidocrinus armatus, Sclerocrinus compressus, Spolonicus sp. nov., Hemicrinus aff. kabanovi, Ancepsicrinus parvus gen. et sp. nov., Tetracrinus baumilleri sp. nov., Eugeniacrinites alexandrowiczi, E. cf. moravicus, E. sp., Eudesicrinus gluchowskii sp. nov. and Hemibrachiocrinus tithonicus sp. nov. are described and illustrated. Representatives of the genus Eudesicrinus, previously recorded only from the Lower Jurassic, are here shown to extend into the uppermost Jurassic. Other cyrtocrinids considered are common in Jurassic/Cretaceous strata across Europe. In the present faunules, isocrinid (Isocrinida), comatulid (Comatulida) and roveacrinid (Roveacrinida sensu Rasmussen, inclusive of Saccocoma) crinoids are associated.  相似文献   
5.
Following an enzymatic procedure for softening the egg envelope, blastomeres in the embryo of the polychaete Platynereis dumerilii were injected with TRITC-dextran. Injection was successful in the following blastomeres: AB, CD, A, B, C, D, 1a-1d, 1A-1D, 4d, and 4d(1). The distribution of fluorescent label was recorded by confocal laser scanning microscopy of young, three-segmented worms after 3 or 4 days of development, in some cases also in 1-day-old trochophore larvae. Results were documented by single optical sections, by stacking a limited number or a complete set of optical sections, and by computer-generated surface views of both the labeled tissue domains and the body contours from complete image stacks of whole worms. With respect to their descent from the embryonic cell pattern, five major compartments can be distinguished which together compose the body of the young worm: 1) The epispheric, epidermal, and neural region of the head, composed of four domains arranged as quasi-radial sectors derived from micromeres 1a, 1b (left and right ventral), and 1c and 1d (right and left dorsal). 2) A posttrochal epidermal region of the head originating from micromeres 2a(1)-2c(1) and constituting the ventral and lateral posttrochal epidermis of the head. 3) A stomodeal-ectomesodermal region of the head, including the stomodeum (micromeres 2a(2) and 2c(2)), its mesodermal envelope, and head mesoderm (micromeres 3a-3d). 4) A solid cone composed of the four terminal macromeres 4A-4D, forming the core of the trunk as the endoderm anlage. 5) An epidermal and mesodermal coating of the trunk originating from the dorsal micromeres 2d and 4d. The region of the so-called (first, anterior) peristomial cirri at the posterior flanks of the head is also composed of 2d- and 4d-derived trunk tissue, thus corroborating the postulated descent of this region and its appendages from a cephalized anteriormost trunk segment and its parapodia. The cell-lineage domains of the first and third micromere tiers are arranged left or right of the sagittal plane, while two micromeres of the second quartet are in a lateral and, initially, two in a median position (2b ventral and 2d dorsal). The offspring of micromere 2d expand from a dorsal position toward the ventral midline and those of cell 4d from a posterior-dorsal site toward the anterior, initially forming two lateral bands. In the epispheric part of the head, part of the neurectodermal tissue derived from micromeres 1a and 1b interweaves in a medio-sagittal bar, and part of the first micromere offspring of all four quadrants (1a-1d) combine in forming a central brain neuropil. Each of the latter sends neurites through both of the circumesophageal connectives. Paired muscle tracts extend through the head toward the base of the antennae and are probably derived from micromeres 3a and 3b. A mesodermal envelope of the stomodeum is probably built by the 3c and 3d micromeres. The formation of symmetry and the nature of the body axes in the embryo and adult of Platynereis dumerilii are discussed. J. Morphol.  相似文献   
6.
7.
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号