首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   206篇
  免费   13篇
  2021年   1篇
  2015年   1篇
  2014年   6篇
  2013年   9篇
  2012年   2篇
  2011年   3篇
  2010年   2篇
  2009年   3篇
  2008年   2篇
  2007年   5篇
  2006年   8篇
  2005年   8篇
  2004年   11篇
  2003年   11篇
  2002年   12篇
  2001年   9篇
  2000年   11篇
  1999年   7篇
  1997年   2篇
  1996年   3篇
  1994年   1篇
  1993年   1篇
  1992年   6篇
  1991年   10篇
  1990年   8篇
  1989年   5篇
  1988年   7篇
  1987年   4篇
  1986年   2篇
  1985年   3篇
  1984年   4篇
  1983年   5篇
  1982年   7篇
  1981年   5篇
  1980年   4篇
  1979年   5篇
  1978年   2篇
  1977年   8篇
  1976年   1篇
  1975年   1篇
  1974年   2篇
  1973年   7篇
  1972年   4篇
  1971年   1篇
排序方式: 共有219条查询结果,搜索用时 31 毫秒
1.
Strains of the yeast Saccharomyces cerevisiae disrupted in YCOX4, the nuclear gene encoding cytochrome c oxidase subunit IV, do not assemble a functional or spectrally visible oxidase. We report the characterization of a yeast strain, RM1, expressing a mutated YCOX4 gene which is temperature sensitive for respiration at 37 degrees C, but incorporates cytochrome aa3 over all growth temperatures. The mutant enzyme is less stable than the wild type, with subunit IV readily proteolyzed without gross denaturation of the complex but with a concomitant loss of oxidase activity. When grown fermentatively at 37 degrees C, cytochrome c oxidase from the mutant strain had a turnover number of less than 3% of the normal complex, while Km values and subunit levels were comparable to normal. Thus alterations in subunit IV can perturb the enzyme structure and alter its catalytic rate, implying a role for this subunit in cytochrome c oxidase function as distinct from assembly.  相似文献   
2.
There is a renewed interest in the structure and functioning of the mitochondrial respiratory chain with the realization that a number of genetic disorders result from defects in mitochondrial electron transfer. These so-called mitochondrial myopathies include diseases of muscle, heart, and brain. The respiratory chain can be fractionated into four large multipeptide complexes, an NADH ubiquinone reductase (complex I), succinate ubiquinone reductase (complex II), ubiquinol oxidoreductase (complex III), and cytochromec oxidase (complex IV). Mitochondrial myopathies involving each of these complexes have been described. This review summarizes compositional and structural data on the respiratory chain proteins and describes the arrangement of these complexes in the mitochondrial inner membrane. This biochemical information is provided as a framework for the diagnosis and molecular characterization of mitochondrial diseases.  相似文献   
3.
Subunit arrangement in beef heart complex III   总被引:6,自引:0,他引:6  
Beef heart mitochondrial complex III was separated into 12 polypeptide bands representing 11 different subunits by using the electrophoresis conditions described by Sch?gger et al. [(1986) Methods Enzymol. 126, 224-237]. Eight of the 12 polypeptide bands were identified from their NH2-terminal sequences as obtained by electroblotting directly from the NaDodSO4-polyacrylamide gel onto a solid support. The topology of the subunits in complex III was explored by three different approaches. (1) Protease digestion experiments of submitochrondrial particles in the presence and absence of detergent showed that subunits II and VI are on the M side of the inner membrane and subunits V and XI on the C side. (2) Labeling experiments with the membrane-intercalated probes [125I]TID and arylazidoPE indicated that cytochrome b is the predominant bilayer embedded subunit of complex III, while the non-heme iron protein appears to be peripherally located. (3) Cross-linking studies with carbodiimides and homobifunctional cleavable reagents demonstrated that near-neighbor pairs include subunits I+II, II+VI, III+VI, IV+V, V+X, and reagents demonstrated that near-neighbor pairs include subunits I+II, II+VI, III+VI, IV+V, V+X, and VI+VII. The cytochrome c binding site was found to include subunits IV, VIII, and X. The combined data are used to provide an updated model for the topology of beef heart complex III.  相似文献   
4.
M Tommasino  R A Capaldi 《Biochemistry》1985,24(15):3972-3976
The inhibitory effect of dicyclohexylcarbodiimide (DCCD) on the activity of the adenosine-triphosphatase of Escherichia coli (ECF1) has been examined in detail. DCCD reacted with ECF1 predominantly in beta subunits with a maximum of 2 mol of reagent per mole of ECF1 being incorporated in these subunits. Ninety-five percent inhibition of steady-state or multistate ATPase activity required incorporation of 1 mol of DCCD per mole of enzyme into beta subunits. Seventy-five percent inhibition of the initial rate of unisite catalysis was only obtained after incorporation of 2 mol of DCCD per mole of ECF1 into beta subunits. Analyses of the kinetics of unisite catalysis and nucleotide binding experiments both indicate that DCCD binds outside the substrate ATP binding site. Inhibition by this reagent appears to be due in part to an effect on the catalytic sites but mainly to the blocking of cooperativity between these sites.  相似文献   
5.
Summary Fifteen lectin-horseradish peroxidase conjugates have been used in a comprehensive histochemical study of human skeletal muscle. The staining patterns of many lectins were found to be coincident with the known distributions of types I, III, IV and V collagen, fibronectin and laminin. One lectin,Bandeiraea simplicifolia (BSA I), selectively stained capillaries in a blood group-specific manner, the significance of which is unknown. The results show that although lectins are useful cytochemical probes for identifying tissue glycoconjugates, lectin binding is not solely determined by monosaccharide specificity as lectins which interact with the same sugars may have completely different staining patterns. Factors such as accessibility, glycan conformation and oligosaccharide sequence also affect lectin binding in tissues. For these reasons, we conclude that a comprehensive histochemical investigation of tissue glycoconjugates should employ a large number of lectins, preferably with overlapping sugar specificities.  相似文献   
6.
The arrangement of subunit IV in beef heart cytochrome c oxidase has been explored by chemical labeling and protease digestion studies. This subunit has been purified from four samples of cytochrome c oxidase that had been reacted with N-(4-azido-2-nitrophenyl)-2-aminoethyl[35S]-sulfonate (NAP-taurine), diazobenzene[35S]sulfonate, 1-myristoyl-2-[12-[(4-azido-2-nitrophenyl)amino]lauroyl]-sn-glycero-3- [14C]phosphocholine (I), and 1-palmitoyl-2-(2-azido-4-nitrobenzoyl)-sn-glycero-3-[3H]phosphocholine (II), respectively. The labeled polypeptide was then fragmented by cyanogen bromide, at arginyl side chains with trypsin (after maleylation), and the distribution of the labeling within the sequence was analyzed. The N-terminal part of subunit IV (residues 1-71) was shown to be heavily labeled by water-soluble, lipid-insoluble reagents but not by the phospholipid derivatives. These latter reagents labeled only in the region of residues 62-122, containing the long hydrophobic and putative membrane-spanning stretch. Trypsin cleavage of native cytochrome c oxidase complex at pH 8.2 was shown to clip the first seven amino acids from subunit IV. This cleavage was found to occur in submitochondrial particles but not in mitochondria or mitoplasts. These results are interpreted to show that subunit IV is oriented with its N terminus on the matrix side of the mitochondrial inner membrane and spans the membrane with the extended sequence of hydrophobic lipid residues 79-98 buried in the bilayer.  相似文献   
7.
8.
L Prochaska  R Bisson  R A Capaldi 《Biochemistry》1980,19(14):3174-3179
Beef heart cytochrome c oxidase has been reacted with [35S]diazobenzenesulfonate ([35S]DABS), [35S]-N-(4-azido-2-nitrophenyl)-2-aminoethylsulfonate ([35S]NAP-taurine), and two different radioactive arylazidophospholipids. The labeling of the seven different subunits of the enzyme with these protein modifying reagents has been examined. DABS, a water-soluble, lipid-insoluble reagent, reacted with subunits II, III, IV, V, and VII but labeled I or VI only poorly. The arylazidophospholipids, probes for the bilayer-intercalated portion of cytochrome c oxidase, labeled I, III, and VII heavily and II and IV lightly but did not react with V or VI. NAP-taurine labeled all of the subunits of cytochrome c oxidase. Evidence is presented that this latter reagent reacts with the enzyme from outside the bilayer, and the pattern of labeling with the different hydrophilic and hydrophobic labeling reagents is used to derive a model for the arrangement of subunits in cytochrome c oxidase.  相似文献   
9.
R Bisson  B Jacobs  R A Capaldi 《Biochemistry》1980,19(18):4173-4178
Two arylazidocytochrome c derivatives, one modified at lysine-13 and the second modified at lysine-22, were reacted with beef heart cytochrome c oxidase. The lysine-13 modified arylazidocytochrome c was found to cross-link both to the enzyme and with lipid bound to the cytochrome c oxidase complex. The lysine-22 derivative reacted only with lipids. Cross-linking to protein was through subunit II of the cytochrome c oxidase complex, as first reported by Bisson et al. [Bisson, R., Azzi, A., Gutweniger, H., Colonna, R., Monteccuco, C., & Zanotti, A. (1978) J. Biol. Chem. 253, 1874]. Binding studies show that the cytochrome c derivative covalently bound to subunit II was in the high-affinity binding site for the substrate. Evidence is also presented to suggest that cytochrome c bound to the lipid was in the low-affinity binding site [as defined by Ferguson-Miller et al. [Ferguson-Miller, S., Brautigan, D. L., & Margoliash, E. (1976) J. Biol. Chem. 251, 1104]]. Covalent binding of the cytochrome c derivative into the high-affinity binding site was found to inhibit electron transfer even when native cytochrome c was added as a substrate. Inhibition was almost complete when 1 mol of the Lys-13 modified arylazidocytochrome c was covalently bound to the enzyme per cytochrome c oxidase dimer (i.e., congruent to 280 000 daltons). Covalent binding of either derivative with lipid (low-affinity site) had very little effect on the overall electron transfer activity of cytochrome c oxidase. These results are discussed in terms of current theories of cytochrome c-cytochrome c oxidase interactions.  相似文献   
10.
A full-length 515 base pairs cDNA for cytochrome c oxidase subunit V of D. discoideum was isolated from a lambda gt11 expression library. The encoded polypeptide, whose identity was confirmed by partial protein sequencing, is 119 amino acids long (Mr = 13,352) and does not contain a cleavable presequence. The protein, which is homologous to human subunit Vb and yeast subunit IV, exhibits the highest degree of sequence conservation found among nuclear-encoded subunits of cytochrome c oxidase from distantly related organisms. All the invariant residues are clustered in two regions of the C-terminus which include the putative amino acids involved in the coordination of the Zn ion tightly associated to eukaryotic oxidase.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号