首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5370篇
  免费   374篇
  2024年   4篇
  2023年   21篇
  2022年   57篇
  2021年   110篇
  2020年   80篇
  2019年   87篇
  2018年   159篇
  2017年   128篇
  2016年   215篇
  2015年   321篇
  2014年   353篇
  2013年   407篇
  2012年   481篇
  2011年   470篇
  2010年   333篇
  2009年   268篇
  2008年   395篇
  2007年   332篇
  2006年   303篇
  2005年   250篇
  2004年   257篇
  2003年   198篇
  2002年   176篇
  2001年   52篇
  2000年   63篇
  1999年   43篇
  1998年   36篇
  1997年   31篇
  1996年   19篇
  1995年   14篇
  1994年   6篇
  1993年   6篇
  1992年   7篇
  1991年   7篇
  1990年   5篇
  1989年   9篇
  1988年   6篇
  1983年   3篇
  1979年   2篇
  1977年   4篇
  1976年   2篇
  1975年   2篇
  1974年   3篇
  1971年   2篇
  1970年   2篇
  1968年   1篇
  1967年   3篇
  1965年   1篇
  1964年   1篇
  1962年   1篇
排序方式: 共有5744条查询结果,搜索用时 15 毫秒
1.
Calli were induced from 300,000 embryos isolated from immature to mature stage of seeds collected on late September from 14 elite trees. When the embryos were cultured onto plastic Petri-dish containing 20 mL of modified B5 basal medium supplemented with 3% (w/v) sucrose, 500 mg/L casein hydrolysate, 250 mg/L myo-inositol, 0.5% (w/v) polyvinyl polypyrrolidon (PVPP), 2×MS vitamins, 0.5 mg/L gibberellic acid, and 10 mg/L 2,4-D after 2 weeks of culture, yellowish-white calli were immediately formed on the surfaces of embryos, and subcultured for 4 weeks in same culture medium. Because most of calli maintained for more than 3 months were revealed differences in their colors, surface texture, and growth rate, visual selection was made for first round screening. When the size of visually selected calli larger than 19 mm in their diameter were inoculated, persistent proliferation was observed. Among the plating methods tested for the selection of rapid growing cell lines at single cell and/or small cell aggregate level, 2-layer spread plating revealed as the best for single cell cloning. To enhance cell growth and maintain high rate of viability for long-term culture of yew cells in bioreactor, final cell volume less than 50% in SCV seemed to be the best. Time course study revealed that 30% of inoculum density was suitable for fed batch culture. Among the tested conditional media, the rate of 1∶2 (old medium: fresh medium) was recorded at the best for cell growth.  相似文献   
2.
Cancer cell motility is a key phenomenon regulating invasion and metastasis. Focal adhesion kinase (FAK) plays a major role in cellular adhesion and metastasis of various cancers. The relationship between dietary supplementation of calcium and colon cancer has been extensively investigated. However, the effect of calcium (Ca2+) supplementation on calpain-FAK-motility is not clearly understood. We sought to identify the mechanism of FAK cleavage through Ca2+ bound lactate (CaLa), its downstream signaling and role in the motility of human colon cancer cells. We found that treating HCT116 and HT-29 cells with CaLa immediately increased the intracellular Ca2+ (iCa2+) levels for a prolonged period of time. Ca2+ influx induced cleavage of FAK into an N-terminal FAK (FERM domain) in a dose-dependent manner. Phosphorylated FAK (p-FAK) was also cleaved in to its p-N-terminal FAK. CaLa increased colon cancer cells motility. Calpeptin, a calpain inhibitor, reversed the effects of CaLa on FAK and pFAK cleavage in both cancer cell lines. The cleaved FAK translocates into the nucleus and modulates p53 stability through MDM2-associated ubiquitination. CaLa-induced Ca2+ influx increased the motility of colon cancer cells was mediated by calpain activity through FAK and pFAK protein destabilization. In conclusion, these results suggest that careful consideration may be given in deciding dietary Ca2+ supplementation to patient undergoing treatment for metastatic cancer.  相似文献   
3.
The purpose of this review is to provide an overview of the effects of adenovirus and influenza virus infections on obesity in various experimental models. We reviewed studies that were conducted within the past 10 years and were related to virus infection and obesity prevalence. Here, we discuss a different causal relationship between adenovirus and influenza infections with obesity. Adenovirus infection can cause obesity, whereas obesity can be a risk factor for increasing influenza virus infection and increases the risk of morbidity and mortality. The prevalence of obesity due to adenovirus infections may be due to an increase in glucose uptake and reduction in lipolysis caused by an increase in corticosterone secretion. Adenovirus infections may lead to increases in appetite by decreasing norepinephrine and leptin levels and also cause immune dysfunction. The relationship between obesity and influenza virus infection could be summarized by the following features: decreases in memory T-cell functionality and interferon (IFN)-α, IFN-β, and IFN-γ mRNA expression, increases in viral titer and infiltration, and impaired dendritic cell function in obese individuals. Moreover, leptin resistance may play an important role in increasing influenza virus infections in obese individuals. In conclusion, prevention of adenovirus infections could be a good approach for reducing obesity prevalence, and prevention of obesity could reduce influenza virus infections from the point of view of viral infections and obesity.  相似文献   
4.
Summary Citric acid was produced using Aspergillus niger immobilized on polyurethane foam in a bubble column reactor. Most of the adsorbed cells remained on the support and, as a result, high oxygen tension was maintained during the reactor operation. However, uncontrolled growth of the pellets made continuous reactor operation difficult. The citric acid productivity obtained from 15 vol.% foam particles containing immobilized cells was 0.135 g/l per hour. This productivity of immobilized cells was almost the same as that of free cells. The oxygen level dropped to half saturation in 5 days in the immobilized cell culture in contrast to 2 days in the free cell culture.  相似文献   
5.
Summary Electron microscopic studies revealed that major cytological changes in the cortical cells of poplar (Populus euramericana cv. gelrica) began to occur in early September in conjunction with the metabolic transition from the growing to the wintering stage. During this transition, the cells became temporarily rich in endoplasmic reticulum, polysomes and vesicles. As the conspicuous formation of organelles progressed, the large vacuoles became smaller and filled with osmiophilic materials. Undefined organelles (protein-lipid bodies) also increased in number. From late October until March, organelles involved in protein synthesis were sparsely distributed in the cells, indicating that the number of these organelles is probably linked to the seasonal cycle of protein synthesis. In early February, after release from dormancy, fusion of vacuoles proceeded in the cells. The inclusion of organelles and a gradual decrease in the amount of osmiophilic materials in the vacuoles occurred at this stage. Subsequently, the structure of the cells continued to undergo changes to accommodate growth, which occurred in early May.  相似文献   
6.
Levels of the polyamines spermidine and putrescine and the major intracellular thiols glutathione (GSH), glutathionylspermidine (GSH-SPD) and dihydrotrypanothione [bis-(glutathionyl)spermidine); T[SH]2] were measured by high performance liquid chromatography throughout the growth cycle of the insect trypanosomatid Crithidia fasciculata. The amount of total spermidine, putrescine and glutathione (free and conjugated to spermidine) was found to be elevated during growth. Of the total spermidine, 30 to 50% was found conjugated to glutathione during the exponential growth phase, increasing to 60 to 70% at stationary phase. T[SH]2 was the principal intracellular thiol during exponential growth (12.1 to 17.4 nmol per 10(8) cells), whereas GSH-SPD was the major thiol in stationary phase (26.2 nmol per 10(8) cells). GSH levels changed little during the growth cycle and represented a constant proportion (10 to 12%) of the total intracellular glutathione. On dilution of stationary phase cells into fresh medium, a rapid decrease in GSH-SPD levels was observed to be associated with synthesis of T[SH]2. This process reached 90% completion by 15 min, with steady state achieved by 120 min. As the total spermidine and glutathione pools did not increase during this interval, it could be calculated that this rapid redistribution of metabolites resulted in the release of 13 nmol per 10(8) cells unconjugated spermidine without de novo synthesis. This mechanism for rapidly elevating the intracellular concentration of free spermidine may be advantageous to this organism in rapidly adapting to favourable growth conditions.  相似文献   
7.
8.
A 4-chlorophenol (4-CP)-degrading bacterium, strain CPW301, was isolated from soil and identified as Comamonas testosteroni. This strain dechlorinated and degraded 4-CP via a meta-cleavage pathway. CPW301 could also utilize phenol as a carbon and energy source without the accumulation of any metabolites via the same meta-cleavage pathway. When phenol was added as a additional substrate, CPW301 could degrade 4-CP and phenol simultaneously. The addition of phenol greatly accelerated the degradation of 4-CP due to the increased cell mass. The simultaneous degradation of the 4-CP and phenol is useful not only for enhanced cell growth but also for the bioremediation of both compounds, which are normally present in hazardous waste sites as a mixture.  相似文献   
9.
Cav3.1 T-type Ca2+ channels play pivotal roles in neuronal low-threshold spikes, visceral pain, and pacemaker activity. Phosphorylation has been reported to potently regulate the activity and gating properties of Cav3.1 channels. However, systematic identification of phosphorylation sites (phosphosites) in Cav3.1 channel has been poorly investigated. In this work, we analyzed rat Cav3.1 protein expressed in HEK-293 cells by mass spectrometry, identified 30 phosphosites located at the cytoplasmic regions, and illustrated them as a Cav3.1 phosphorylation map which includes the reported mouse Cav3.1 phosphosites. Site-directed mutagenesis of the phosphosites to Ala residues and functional analysis of the phospho-silent Cav3.1 mutants expressed in Xenopus oocytes showed that the phospho-silent mutation of the N-terminal Ser18 reduced its current amplitude with accelerated current kinetics and negatively shifted channel availability. Remarkably, the phospho-silent mutations of the C-terminal Ser residues (Ser1924, Ser2001, Ser2163, Ser2166, or Ser2189) greatly reduced their current amplitude without altering the voltage-dependent gating properties. In contrast, the phosphomimetic Asp mutations of Cav3.1 on the N- and C-terminal Ser residues reversed the effects of the phospho-silent mutations. Collectively, these findings demonstrate that the multiple phosphosites of Cav3.1 at the N- and C-terminal regions play crucial roles in the regulation of the channel activity and voltage-dependent gating properties.  相似文献   
10.
Herein, we report the design, synthesis and evaluation of novel (E)-3-(3-oxo-4-substituted-3,4-dihydro-2H-benzo[b][1,4]oxazin-6-yl)-N-hydroxypropenamides ( 4 a – i , 7 a – g ) targeting histone deacetylases. Three human cancer cell lines were used to test the cytotoxicity of the synthesized compounds (SW620, colon; PC-3, prostate; NCI−H23, lung cancer); inhibitory activity towards HDAC; anticancer activity; as well as their impact on the cell cycle and apoptosis. As a result, compounds 4 a – i bearing the alkyl substituents seemed to be less potent than the benzyl-containing compounds 7 a – g in all biological assays. Compounds 7 e – f were found to be the most active HDAC inhibitors with IC50 of 1.498±0.020 μM and 1.794±0.159 μM, respectively. In terms of cytotoxicity and anticancer assay, 7 e and 7 f also showed good activity with IC50 values in the micromolar range. In addition, the cell cycle and apoptosis of SW620 were affected by compound 7 f in almost a similar manner to that of reference compound SAHA. Docking assays were carried out for analysis the binding mode and selectivity of this compound toward 8 HDAC isoforms. Overall, our data confirmed that the inhibition of HDAC plays a pivotal role in their anticancer activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号