首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32篇
  免费   4篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2012年   3篇
  2010年   1篇
  2008年   2篇
  2007年   2篇
  2006年   2篇
  2004年   1篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1990年   2篇
  1989年   2篇
  1986年   1篇
  1984年   3篇
  1976年   1篇
  1975年   1篇
  1971年   1篇
  1970年   1篇
  1943年   1篇
  1942年   1篇
  1941年   1篇
  1930年   1篇
排序方式: 共有36条查询结果,搜索用时 15 毫秒
1.
Glucosidase II, an asparagine-linked oligosaccharide processing enzyme, is a resident glycoprotein of the endoplasmic reticulum. In kidney tubular cells, in contrast to previous findings on hepatocytes, we found by light and electron microscopy immunoreactivity for glucosidase II predominantly in post-Golgi apparatus structures. The majority of immunolabel was in endocytotic structures beneath the plasma membrane. Immunoprecipitation confirmed presence of the glucosidase II subunit in purified brush border preparations. Kidney glucosidase II contained species carrying endo H-sensitive, high mannose as well as endo H-resistant oligosaccharide chains. Some species of glucosidase II contained sialic acid. The sialylated species were enzymatically active. This study demonstrates than an enzyme presumed to be a resident of the endoplasmic reticulum may show alternative localizations in some cell types.  相似文献   
2.
Gain-of-function mutations in the calcium channel TRPC6 lead to autosomal dominant focal segmental glomerulosclerosis and podocyte expression of TRPC6 is increased in some acquired human glomerular diseases, particularly in membranous nephropathy. These observations led to the hypothesis that TRPC6 overactivation is deleterious to podocytes through pathological calcium signaling, both in genetic and acquired diseases. Here, we show that the effects of TRPC6 on podocyte function are context-dependent. Overexpression of TRPC6 alone did not directly affect podocyte morphology and cytoskeletal structure. Unexpectedly, however, overexpression of TRPC6 protected podocytes from complement-mediated injury, whereas genetic or pharmacological TRPC6 inactivation increased podocyte susceptibility to complement. Mechanistically, this effect was mediated by Ca2+/calmodulin-dependent protein kinase II (CaMKII) activation. Podocyte-specific TRPC6 transgenic mice showed stronger CaMKII activation, reduced podocyte foot process effacement and reduced levels of proteinuria during nephrotoxic serum nephritis, whereas TRPC6 null mice exhibited reduced CaMKII activation and higher levels of proteinuria compared with wild type littermates. Human membranous nephropathy biopsy samples showed podocyte staining for active CaMKII, which correlated with the degree of TRPC6 expression. Together, these data suggest a dual and context dependent role of TRPC6 in podocytes where acute activation protects from complement-mediated damage, but chronic overactivation leads to focal segmental glomerulosclerosis.  相似文献   
3.
Invasive fungal infections by Candida albicans (Ca) are a frequent cause of lethal sepsis in intensive care unit patients. While a contribution of type I interferons (IFNs-I) in fungal sepsis remains unknown, these immunostimulatory cytokines mediate the lethal effects of endotoxemia and bacterial sepsis. Using a mouse model lacking a functional IFN-I receptor (Ifnar1−/−), we demonstrate a remarkable protection against invasive Ca infections. We discover a mechanism whereby IFN-I signaling controls the recruitment of inflammatory myeloid cells, including Ly6Chi monocytes and neutrophils, to infected kidneys by driving expression of the chemokines CCL2 and KC. Within kidneys, monocytes differentiate into inflammatory DCs but fail to functionally mature in Ifnar1−/− mice, as demonstrated by the impaired upregulation of the key activation markers PDCA1 and iNOS. The increased activity of inflammatory monocytes and neutrophils results in hyper-inflammation and lethal kidney pathology. Pharmacological diminution of monocytes and neutrophils by treating mice with pioglitazone, a synthetic agonist of the nuclear receptor peroxisome proliferator-activated receptor-γ (PPAR-γ), strongly reduces renal immunopathology during Ca infection and improves mouse survival. Taken together, our data connect for the first time the sepsis-promoting functions of IFNs-I to the CCL2-mediated recruitment and the activation of inflammatory monocytes/DCs with high host-destructing potency. Moreover, our data demonstrate a therapeutic relevance of PPAR-γ agonists for microbial infectious diseases where inflammatory myeloid cells may contribute to fatal tissue damage.  相似文献   
4.
5.
6.
Goodpasture syndrome is an autoimmune disease of the kidneys and lungs mediated by antibodies and T-cells directed to cryptic epitopes hidden within basement membrane hexamers rich in alpha3 non-collagenous globular (NC1) domains of type IV collagen. These epitopes are normally invisible to the immune system, but this privilege can be obviated by chemical modification. Endogenous drivers of immune activation consequent to the loss of privilege have long been suspected. We have examined the ability of reactive oxygen species (ROS) to expose Goodpasture epitopes buried within NC1 hexamers obtained from renal glomeruli abundant in alpha3(IV) NC1 domains. For some hexameric epitopes, like the Goodpasture epitopes, exposure to ROS specifically enhanced recognition by Goodpasture antibodies in a sequential and time-dependent fashion; control binding of epitopes to alpha3(IV) alloantibodies from renal transplant recipients with Alport syndrome was decreased, whereas epitope binding to heterologous antibodies recognizing all alpha3 NC1 epitopes remained the same. Inhibitors of hydrogen peroxide and hydroxyl radical scavengers were capable of attenuating the effects of ROS in cells and kidney by 30-50%, respectively, thereby keeping the Goodpasture epitopes largely concealed when compared with a 70% maximum inhibition by iron chelators. Hydrogen peroxide administration to rodents was sufficient to expose Goodpasture epitope in vivo and initiate autoantibody production. Our findings collectively suggest that ROS can alter the hexameric structure of type IV collagen to expose or destroy selectively immunologic epitopes embedded in basement membrane. The reasons for autoimmunity in Goodpasture syndrome may lie in an age-dependent deterioration in inhibitor function modulating oxidative damage to structural molecules. ROS therefore may play an important role in shaping post-translational epitope diversity or neoantigen formation in organ tissues.  相似文献   
7.
This study, using immunocytochemical light and electron microscopy techniques, characterizes the distribution of three antibodies bound to the surface of rat glomerular visceral epithelial cells (GEC) in culture, and tests their ability to redistribute corresponding antigens under conditions appropriate for antigenic modulation (antigen disappearance). At 4 degrees C or after fixation, anti-renal tubular brush border vesicle (BBV) IgG bound diffusely to the surface of GEC and to coated pits. Anti-gp330 IgG had a discrete distribution on the surface of GEC and reacted with coated pits. Anti-podocalyxin IgG was bound diffusely to the surface of GEC but not to coated pits. At 37 degrees C, anti-BBV IgG induced marked redistribution of immune complexes with both shedding and internalization. Anti-gp330 IgG induced weaker redistribution, with internalization of immune complexes predominating. Anti-podocalyxin IgG induced rapid redistribution of immune complexes and antigenic modulation but minimal internalization. Experiments of differential redistribution indicated that anti-BBV IgG modulated the expression of both gp330 and podocalyxin; anti-gp330 IgG had a weaker effect on BBV antigens and podocalyxin; and anti-podocalyxin failed to redistribute BBV antigens or gp330. The relevance of these immunocytochemical studies of antibody-cell surface antigen interaction in cultured GEC to understanding the pathogenesis of Heymann glomerulonephritis (HG) is discussed.  相似文献   
8.
The glomerular epithelial polyanion is a specialized cell surface component found on renal glomerular epithelial cells (podocytes) that is rich in sialoprotein(s), as detected by staining with cationic dyes (colloidal iron, alcian blue) and wheat germ agglutinin (WGA). We have isolated rat glomeruli and analyzed their protein composition by SDS PAGE in 5-10% gradient gels. When the gels were stained with alcian blue or "Stains All," a single band with an apparent Mr of 140,000 was detected that also stained very prominently with silver, but not with Coomassie Blue. This band predominated in fluorograms of gels of isolated glomeruli that had been labeled in their sialic acid residues by periodate-[3H]borohydride. In lectin overlays, the 140-kilodalton (kd) band was virtually the only one that bound [125I]wheat germ agglutinin, and this binding could be prevented by predigestion with neuraminidase. [125I]Peanut lectin bound exclusively to the 140-kd band after neuraminidase treatment. An antibody was prepared that specifically recognizes only the 140-kd band by immunoprecipitation and immuneoverlay. By immunoperoxidase and immunogold techniques, it was localized to the surface coat of the glomerular epithelium and, less extensively, to that of endothelial cells. When analyzed (after electroelution from preparative SDS gels), the 140-kd band was found to contain approximately 20% hexose and approximately 4.5% sialic acid. These findings indicate that the 140-kd protein is the major sialoprotein of the glomerulus, and it is the only component of glomerular lysates with an affinity for cationic dyes and lectins identical to that defined histochemically for the epithelial polyanion in situ. Since this molecule is a major component of the cell coat or glycocalyx of the podocytes, we have called it "podocalyxin."  相似文献   
9.
10.
Efficient methods for profiling of the cell surface proteome are desirable to get a deeper insight in basic biological processes, to localise proteins and to uncover proteins differentially expressed in diseases. Here we present a strategy to target cell surface exposed proteins via fluorescence labelling using CyDye DIGE fluors. This method has been applied to human cell lines in vitro as well as to a complex biological system in vivo. It allows detection of fluorophore-tagged cell surface proteins and visualisation of the accessible proteome within a single 2-D gel, simplifying subsequent UV MALDI-MS analysis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号