首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   4篇
  2017年   1篇
  2016年   1篇
  2015年   2篇
  2014年   3篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2009年   2篇
  2007年   1篇
  2004年   1篇
  2003年   3篇
  2002年   1篇
  2001年   1篇
  1999年   1篇
  1998年   1篇
  1989年   1篇
  1981年   1篇
  1977年   1篇
排序方式: 共有25条查询结果,搜索用时 333 毫秒
1.
We investigate multilayered helical packaging of double-stranded DNA, or of a general polymer chain with persistence length lb, into an ideal, inert cylindrical container, reaching densities slightly below close packaging. We calculate the free energy as a function of the packaged length, based on the energies for bending, twisting, the suffered entropy loss, and the electrostatic energy in a Debye–Hückel model. In the absence of charges on the packaged polymer, a critical packaging force can be determined, similar to the mechanism involved in DNA unzipping models. When charges are taken into consideration, in the final packaging state the charges which are chemically distant become geometrically close, and therefore a steep rise is seen in the free energy. We argue that due to the extremely ordered and almost closely packaged final state the actual packaging geometry does not influence the behaviour of the free energy, pointing towards a certain universality of this state of the polymer. Our findings are compared to a recent simulations study, showing that the model is sensitive to the screening length.  相似文献   
2.

Background  

Choriocarcinoma is an aggressive neoplasm arising in the body of the uterus. The disease normally spreads to lung and brain.  相似文献   
3.

Introduction  

Development of cell therapies for repairing the intervertebral disc is limited by the lack of a source of healthy human disc cells. Stem cells, particularly mesenchymal stem cells, are seen as a potential source but differentiation strategies are limited by the lack of specific markers that can distinguish disc cells from articular chondrocytes.  相似文献   
4.
5.

Objective

Patients with temporal lobe epilepsy (TLE) with hippocampal sclerosis (HS) have diffuse subtle gray matter (GM) atrophy detectable by MRI quantification analyses. However, it is not clear whether the etiology and seizure frequency are associated with this atrophy. We aimed to evaluate the occurrence of GM atrophy and the influence of seizure frequency in patients with TLE and either normal MRI (TLE-NL) or MRI signs of HS (TLE-HS).

Methods

We evaluated a group of 172 consecutive patients with unilateral TLE-HS or TLE-NL as defined by hippocampal volumetry and signal quantification (122 TLE-HS and 50 TLE-NL) plus a group of 82 healthy individuals. Voxel-based morphometry was performed with VBM8/SPM8 in 3T MRIs. Patients with up to three complex partial seizures and no generalized tonic-clonic seizures in the previous year were considered to have infrequent seizures. Those who did not fulfill these criteria were considered to have frequent seizures.

Results

Patients with TLE-HS had more pronounced GM atrophy, including the ipsilateral mesial temporal structures, temporal lobe, bilateral thalami and pre/post-central gyri. Patients with TLE-NL had more subtle GM atrophy, including the ipsilateral orbitofrontal cortex, bilateral thalami and pre/post-central gyri. Both TLE-HS and TLE-NL showed increased GM volume in the contralateral pons. TLE-HS patients with frequent seizures had more pronounced GM atrophy in extra-temporal regions than TLE-HS with infrequent seizures. Patients with TLE-NL and infrequent seizures had no detectable GM atrophy. In both TLE-HS and TLE-NL, the duration of epilepsy correlated with GM atrophy in extra-hippocampal regions.

Conclusion

Although a diffuse network GM atrophy occurs in both TLE-HS and TLE-NL, this is strikingly more evident in TLE-HS and in patients with frequent seizures. These findings suggest that neocortical atrophy in TLE is related to the ongoing seizures and epilepsy duration, while thalamic atrophy is more probably related to the original epileptogenic process.  相似文献   
6.
7.
We calculate the many-body, nonpairwise interaction between N rigid, anisotropic membrane inclusions by modeling them as point-like constraints on the membrane's curvature tensor and by minimizing the membrane's curvature energy. Because multipolar distortions of higher-order decay on very short distances, our calculation gives the correct elastic interaction energy for inclusions separated by distances of the order of several times their size. As an application, we show by thermally equilibrating the many-body elastic energy using a Monte Carlo algorithm, that inclusions shaped as "saddles" attract each other and build an "egg-carton" structure. The latter is reminiscent of some patterns observed in membranes obtained from biological extracts, the origin of which is still mysterious.  相似文献   
8.
9.
10.
We developed a broad-ranging method for identifying key hydrogen-producing and consuming microorganisms through analysis of hydrogenase gene content and expression in complex anaerobic microbial communities. The method is based on a tiling hydrogenase gene oligonucleotide DNA microarray (Hydrogenase Chip), which implements a high number of probes per gene by tiling probe sequences across genes of interest at 1.67 × –2 × coverage. This design favors the avoidance of false positive gene identification in samples of DNA or RNA extracted from complex microbial communities. We applied this technique to interrogate interspecies hydrogen transfer in complex communities in (i) lab-scale reductive dehalogenating microcosms enabling us to delineate key H2-consuming microorganisms, and (ii) hydrogen-generating microbial mats where we found evidence for significant H2 production by cyanobacteria. Independent quantitative PCR analysis on selected hydrogenase genes showed that this Hydrogenase Chip technique is semiquantitative. We also determined that as microbial community complexity increases, specificity must be traded for sensitivity in analyzing data from tiling DNA microarrays.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号