首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   1篇
  2016年   1篇
  2014年   1篇
  2012年   4篇
  2010年   2篇
  2009年   2篇
  2007年   1篇
  2005年   3篇
排序方式: 共有14条查询结果,搜索用时 31 毫秒
1.
2.
Insulin secretory granules are β-cell vesicles dedicated to insulin processing, storage, and release. The secretion of insulin secretory granule content in response to an acute increase of glucose concentration is a highly regulated process allowing normal glycemic homeostasis. Type 2 diabetes is a metabolic disease characterized by chronic hyperglycemia. The consequent prolonged glucose exposure is known to exert deleterious effects on the function of various organs, notably impairment of insulin secretion by pancreatic β-cells and induction of apoptosis. It has also been described as modifying gene and protein expression in β-cells. Therefore, we hypothesized that a modulation of insulin secretory granule protein expression induced by chronic hyperglycemia may partially explain β-cell dysfunction. To identify the potential early molecular mechanisms underlying β-cell dysfunction during chronic hyperglycemia, we performed SILAC and mass spectrometry experiments to monitor changes in the insulin secretory granule proteome from INS-1E rat insulinoma β-cells cultivated either with 11 or 30 mm of glucose for 24 h. Fourteen proteins were found to be differentially expressed between these two conditions, and several of these proteins were not described before to be present in β-cells. Among them, neuronal pentraxin 1 was only described in neurons so far. Here we investigated its expression and intracellular localization in INS-1E cells. Furthermore, its overexpression in glucotoxic conditions was confirmed at the mRNA and protein levels. According to its role in hypoxia-ischemia-induced apoptosis described in neurons, this suggests that neuronal pentraxin 1 might be a new β-cell mediator in the AKT/GSK3 apoptotic pathway. In conclusion, the modification of specific β-cell pathways such as apoptosis and oxidative stress may partially explain the impairment of insulin secretion and β-cell failure, observed after prolonged exposure to high glucose concentrations.  相似文献   
3.
4.
Insulin secretory granules (ISGs) are pivotal organelles of pancreatic ß-cells and represent a key participant to glucose homeostasis. Indeed, insulin is packed and processed within these vesicles before its release by exocytosis. It is therefore crucial to acquire qualitative and quantitative data on the ISG proteome, in order to increase our knowledge on ISG biogenesis, maturation and exocytosis. Despites efforts made in the past years, the coverage of the ISG proteome is still incomplete and comprises many potential protein contaminants most likely coming from suboptimal sample preparations. We developed here a 3-step gradient purification procedure combined to Stable Isotope Labeling with Amino acids in Cell culture (SILAC) to further characterize the ISG protein content. Our results allowed to build three complementary proteomes containing 1/ proteins which are enriched in mature ISGs, 2/ proteins sharing multiple localizations including ISGs, and finally 3/ proteins sorted out from immature ISGs and/or co-purifying contaminants. As a proof of concept, the ProSAAS, a neuronal protein found in ISGs was further characterized and its granular localization proved. ProSAAS might represent a novel potential target allowing to better understand the defaults in insulin processing and secretion observed during type 2 diabetes progression. This article is part of a special issue entitled: Translational Proteomics.  相似文献   
5.
6.
Coelacanths are lobe-finned fish represented by two extant species, Latimeria chalumnae in South Africa and Comoros and L. menadoensis in Indonesia. Due to their intermediate phylogenetic position between ray-finned fish and tetrapods in the vertebrate lineage, they are of great interest from an evolutionary point of view. In addition, extant specimens look similar to 300 million-year-old fossils; because of their apparent slowly evolving morphology, coelacanths have been often described as « living fossils ». As an underlying cause of such a morphological stasis, several authors have proposed a slow evolution of the coelacanth genome. Accordingly, sequencing of the L. chalumnae genome has revealed a globally low substitution rate for protein-coding regions compared to other vertebrates. However, genome and gene evolution can also be influenced by transposable elements, which form a major and dynamic part of vertebrate genomes through their ability to move, duplicate and recombine. In this work, we have searched for evidence of transposition activity in coelacanth genomes through the comparative analysis of orthologous genomic regions from both Latimeria species. Comparison of 5.7 Mb (0.2%) of the L. chalumnae genome with orthologous Bacterial Artificial Chromosome clones from L. menadoensis allowed the identification of 27 species-specific transposable element insertions, with a strong relative contribution of CR1 non-LTR retrotransposons. Species-specific homologous recombination between the long terminal repeats of a new coelacanth endogenous retrovirus was also detected. Our analysis suggests that transposon activity is responsible for at least 0.6% of genome divergence between both Latimeria species. Taken together, this study demonstrates that coelacanth genomes are not evolutionary inert: they contain recently active transposable elements, which have significantly contributed to post-speciation genome divergence in Latimeria.  相似文献   
7.
8.
Chronic hyperglycaemia is one of the main characteristics of a diabetic state. This is also the first cause of diabetic complications. However, it is now generally accepted that glucotoxicity also participates in the worsening of type 2 diabetes, by affecting the secretion of β-cells. So far, different mechanisms have been proposed to explain the adverse effects of chronic hyperglycaemia. One of them suggests that the modulation of expression of several key proteins during a hyperglycaemia state, may explain the toxic effect of glucotoxicity. Therefore, proteomic analysis of biological samples represents an interesting method to study the effect of chronic hyperglycaemia on protein expression. The discovery of new proteins for which the expression could be modulated by chronic hyperglycaemia may probably help to better understand the mechanisms underlying glucotoxicity. In this review, we will first present an introduction of the different mechanisms known to be involved in the control of glucose homeostasis and in the development of glucotoxicity. In a second part, some proteomic data linked with the effect of glucotoxicity in pancreas, pancreatic islets and β-cells will be presented and discussed.  相似文献   
9.
The comprehensive and quantitative analysis of the protein phosphorylation patterns in different cellular context is of considerable and general interest. The ability to quantify phosphorylation of discrete signalling proteins in large collections of biological samples would greatly favour the development of systems biology in the field of cell signalling. Reverse‐phase protein array (RPPA) potentially represents a very attractive approach to map signal transduction networks with high throughput. In the present report, we describe an improved detection method for RPPA combining near‐infrared with one or two rounds of tyramide‐based signal amplification. The LOQ was lowered from 6.84 attomoles with a direct detection protocol to 0.21 attomole with two amplification steps. We validated this method in the context of intracellular signal transduction triggered by follicle‐stimulating hormone in HEK293 cells. We consistently detected phosphorylated proteins in the sub‐attomole range from less than 1 ng of total cell extracts. Importantly, the method correlated with Western blot analysis of the same samples while displaying excellent intra‐ and inter‐slide reproducibility. We conclude that RPPA combined with amplified near‐infrared detection can be used to capture the subtle regulations intrinsic to signalling network dynamics at an unprecedented throughput, from minute amounts of biological samples.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号