首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   118篇
  免费   11篇
  2022年   1篇
  2021年   4篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2017年   2篇
  2016年   3篇
  2015年   2篇
  2014年   1篇
  2013年   7篇
  2012年   12篇
  2011年   7篇
  2010年   6篇
  2009年   4篇
  2008年   8篇
  2007年   8篇
  2006年   7篇
  2005年   1篇
  2004年   10篇
  2003年   7篇
  2002年   7篇
  2001年   6篇
  2000年   6篇
  1999年   7篇
  1998年   5篇
  1996年   1篇
  1995年   1篇
  1992年   1篇
  1990年   1篇
  1987年   1篇
排序方式: 共有129条查询结果,搜索用时 31 毫秒
1.
M Nakasako  M Odaka  M Yohda  N Dohmae  K Takio  N Kamiya  I Endo 《Biochemistry》1999,38(31):9887-9898
The crystal structure analysis of the Fe-type nitrile hydratase from Rhodococcus sp. N-771 revealed the unique structure of the enzyme composed of the alpha- and beta-subunits and the unprecedented structure of the non-heme iron active center [Nagashima, S., et al. (1998) Nat. Struct. Biol. 5, 347-351]. A number of hydration water molecules were identified both in the interior and at the exterior of the enzyme. The study presented here investigated the roles of the hydration water molecules in stabilizing the tertiary and the quaternary structures of the enzyme, based on the crystal structure and the results from a laser light scattering experiment for the enzyme in solution. Seventy-six hydration water molecules between the two subunits significantly contribute to the alphabeta heterodimer formation by making up the surface shape, forming extensive networks of hydrogen bonds, and moderating the surface charge of the beta-subunit. In particular, 20 hydration water molecules form the extensive networks of hydrogen bonds stabilizing the unique structure of the active center. The amino acid residues hydrogen-bonded to those hydration water molecules are highly conserved among all known nitrile hydratases and even in the homologous enzyme, thiocyanate hydrolase, suggesting the structural conservation of the water molecules in the NHase family. The crystallographic asymmetric unit contained two heterodimers connected by 50 hydration water molecules. The heterotetramer formation in crystallization was clearly explained by the concentration-dependent aggregation state of NHase found in the light scattering measurement. The measurement proved that the dimer-tetramer equilibrium shifted toward the heterotetramer dominant state in the concentration range of 10(-2)-1.0 mg/mL. In the tetramer dominant state, 50 water molecules likely glue the two heterodimers together as observed in the crystal structure. Because NHase exhibits a high abundance in bacterial cells, the result suggests that the heterotetramer is physiologically relevant. In addition, it was revealed that the substrate specificity of this enzyme, recognizing small aliphatic substrates rather than aromatic ones, came from the narrowness of the entrance channel from the bulk solvent to the active center. This finding may give a clue for changing the substrate specificity of the enzyme. Under the crystallization condition described here, one 1,4-dioxane molecule plugged the channel. Through spectroscopic and crystallographic experiments, we found that the molecule prevented the dissociation of the endogenous NO molecule from the active center even when the crystal was exposed to light.  相似文献   
2.
We have reported that acrolein-conjugated low-density lipoprotein (Acro-LDL) uptake by scavenger receptor class A type 1 (SR-A1) can mediate macrophage foam cell formation. The purpose of this study was to determine which amino acid residues of apoB protein in LDL are conjugated with acrolein. Acro-apoB was prepared by incubation of LDL with acrolein (10 to 60 μM) at 37 °C for 7 days. Identification of acrolein-conjugated amino acid residues in apoB was performed using LC-MS/MS. The levels of acrolein-conjugated amino acid residues of apoB as well as crosslinking apoB increased in proportion to acrolein concentration. The level of LDL uptake by macrophages was parallel with the acrolein-conjugated monomer apoB. Acrolein-conjugated amino acid residues in apoB were C212, K327, K742, K949, K1087, H1923, K2634, K3237 and K3846. The NH2-teriminal four amino acid residues (C212, K327, K742 and K949) were located at the scavenger receptor SR-A1 recognition site, suggesting that these four acrolein-conjugated amino acids are involved in the rapid uptake of Acro-LDL by macrophages. It is proposed that the rapid uptake of LDL by macrophages is dependent on acrolein conjugation of four amino acids residues at the scavenger receptor recognition site of apoB in LDL.  相似文献   
3.
A mixture of sphingomyelin (SM) and cholesterol (Chol) exhibits a characteristic lipid raft domain of the cell membranes that provides a platform to which various signal molecules as well as virus and bacterial proteins are recruited. Several proteins capable of specifically binding either SM or Chol have been reported. However, proteins that selectively bind to SM/Chol mixtures are less well characterized. In our screening for proteins specifically binding to SM/Chol liposomes, we identified a novel ortholog of Pleurotus ostreatus, pleurotolysin (Ply)A, from the extract of edible mushroom Pleurotus eryngii, named PlyA2. Enhanced green fluorescent protein (EGFP)-conjugated PlyA2 bound to SM/Chol but not to phosphatidylcholine/Chol liposomes. Cell surface labeling of PlyA2-EGFP was abolished after sphingomyelinase as well as methyl-β-cyclodextrin treatment, removing SM and Chol, respectively, indicating that PlyA2-EGFP specifically binds cell surface SM/Chol rafts. Tryptophan to alanine point mutation of PlyA2 revealed the importance of C-terminal tryptophan residues for SM/Chol binding. Our results indicate that PlyA2-EGFP is a novel protein probe to label SM/Chol lipid domains both in cell and model membranes.  相似文献   
4.
Photosynthesis Research - Diatoms are dominant phytoplankton in aquatic environments and have unique light-harvesting apparatus, fucoxanthin chlorophyll a/c-binding protein (FCP). Diatom...  相似文献   
5.
Extracellular serine protease neuropsin (NP) is expressed in the forebrain limbic area of adult brain and is implicated in synaptic plasticity. We screened for endogenous NP inhibitors with recombinant NP (r-NP) from extracts of the hippocampus and the cerebral cortex in adult mouse brain. Two SDS-stable complexes were detected, and after their purification, peptide sequences were determined by amino acid sequencing and mass spectrometry, revealing that target molecules were serine proteinase inhibitor-3 (SPI3) and murinoglobulin I (MUG I). The addition of the recombinant SPI3 to r-NP resulted in an SDS-stable complex, and the complex formation followed bimolecular kinetics with an association rate constant of 3.4 +/- 0.22 x 10(6) M(-1) s(-1), showing that SPI3 was a slow, tight binding inhibitor of NP. In situ hybridization histochemistry showed that SPI3 mRNA was expressed in pyramidal neurons in the hippocampal CA1-CA3 subfields, as was NP mRNA. Alternatively, the addition of purified plasma MUG I to r-NP resulted in an SDS-stable complex, and MUG I inhibited degradation of fibronectin by r-NP to 24% at a r-NP/MUG I molar ratio of 1:2. Immunofluorescence histochemistry showed that MUG I localized in the hippocampal neurons. These findings indicate that SPI3 and MUG I serve to inactivate NP and control the level of NP in adult brain, respectively.  相似文献   
6.
In our previous paper, we reported that a 15 kDa protein (p15) produced by a fungus, genus Helicosporium, enhanced NGF-induced neurite outgrowth from PC12 cells. Here we further characterized the actions of p15. The complete amino acid sequence of p15 was determined and it was shown to be a hydrophilic protein composed of 118 amino acid residues with two intramolecular disulfide bridges. p15-induced neurite outgrowth was blocked by the depletion of extracellular Ca(2+) in the culture medium and was significantly inhibited by L-type Ca(2+) channel inhibitor nicardipine. p15 stimulated Src kinase and MAPK activities, and neurite outgrowth was not observed in srcDN2, a dominant negative c-src(K295R)-expressing cell line, and was significantly reduced in RasN17-expressing cells. These results suggest that p15 stimulates neurite outgrowth through the potentiation of L-type Ca(2+) channels, thereby activating the Src-Ras-MAPK cascade.  相似文献   
7.
Fractalkine/CX3C ligand 1 and its receptor CX3CR1 are known to mediate both cell adhesion and cell migration. Here we show that CX3CR1 defines peripheral blood cytotoxic effector lymphocytes commonly armed with intracellular perforin and granzyme B, which include NK cells, gammadelta T cells, and terminally differentiated CD8(+) T cells. In addition, soluble fractalkine preferentially induced migration of cytotoxic effector lymphocytes. Furthermore, interaction of cytotoxic effector lymphocytes with membrane-bound fractalkine promoted subsequent migration to the secondary chemokines, such as macrophage inflammatory protein-1beta/CC ligand 4 or IL-8/CXC ligand 8. Thus, fractalkine expressed on inflamed endothelium may function as a vascular regulator for cytotoxic effector lymphocytes, regardless of their lineage and mode of target cell recognition, through its ability to capture them from blood flow and to promote their emigration in response to other chemokines.  相似文献   
8.
An important role of protein ADP-ribosylation in bacterial morphogenesis has been proposed (J. Bacteriol. 178, 3785-3790; 178, 4935-4941). To clarify the detail of ADP-ribosylation, we identified a new kind of target protein for ADP-ribosylation in Streptomyces coelicolor A3(2) grown to the late growth phase. All four proteins (MalE, BldKB, a periplasmic protein for binding branched-chain amino-acids, and a periplasmic solute binding protein) were functionally similar and participated in the regulation of transport of metabolites or nutrients through the membrane. ADP-ribosylation was likely to occur on a cysteine residue, because the modification group was removed by mercuric chloride treatment. The modification site may be the site of lipoprotein modification necessary for protein export. This report is the first suggesting that certain proteins involved in membrane transport can be ADP-ribosylated.  相似文献   
9.
10.
CIRP2, a major cytoplasmic RNA-binding protein in Xenopus oocytes   总被引:2,自引:1,他引:1       下载免费PDF全文
In an attempt to isolate mRNA-binding proteins we fractionated Xenopus oocyte lysate by oligo(dT)–cellulose chromatography. A 20 kDa protein was the major component of the eluate. cDNA cloning revealed that this protein is a Xenopus homolog of the cold-inducible RNA-binding protein (CIRP) which was originally identified in mammalian cells as a protein that is overexpressed upon a temperature downshift. This Xenopus protein, termed here xCIRP2, is highly expressed in ovary, testis and brain in adult Xenopus tissues. In oocytes it is predominantly localized in the cytoplasm. By biochemical fractionation we provide evidence that xCIRP2 is associated with ribosomes, suggesting that it participates in translational regulation in oocytes. Microinjection of labeled mRNA into oocytes followed by UV cross-linking of the oocyte lysate led to identification of two major RNA-binding activities. Immunoprecipitation of the RNA-binding proteins demonstrated that one is xCIRP2 and that the other contains FRGY2. FRGY2, which is one of the principal constituents of mRNA storage particles involved in translational masking of maternal mRNA, has an RNA-binding domain conserved to those of bacterial cold shock proteins. Possible implications of the highly abundant expression in oocytes of cold shock RNA-binding proteins of both eukaryotic and prokaryotic types are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号