首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   55篇
  免费   4篇
  2024年   1篇
  2022年   1篇
  2021年   2篇
  2019年   1篇
  2018年   2篇
  2015年   1篇
  2014年   4篇
  2013年   2篇
  2012年   9篇
  2011年   4篇
  2010年   4篇
  2008年   3篇
  2007年   7篇
  2006年   2篇
  2005年   4篇
  2004年   5篇
  2003年   3篇
  2002年   2篇
  2001年   1篇
  1974年   1篇
排序方式: 共有59条查询结果,搜索用时 15 毫秒
1.
2.
Effect of prolonged administration of substance P on the plasma cortisol level in the albino rats has been investigated. An inhibitory impact on intact individuals and a stimulatory effect in pharmacologically annulled rats has been observed. It is concluded that in normal conditions substance P presumably acts as a preventive agent for any excess secretion of cortisol while during stress or disturbed HPA or RAS conditions, it stimulates the secretion of cortisol. An intraglandular modulatory role of substance P has been suggested.  相似文献   
3.
Three furocoumarins, bergapten, heraclenin and heraclenol have been isolated from the roots of Selinum tenuifolium (Umbelliferae). Another coumarin, m.p. 85–86°, isolated from the same source and provisionally designated as ST-1, has been proved to be mixture of imperatorin, and 8-geranyloxypsolaren by analyses of various reaction products and separation by preparative TLC on silica gel G impregnated with silver nitrate.  相似文献   
4.
Defects of the translation apparatus in human mitochondria are known to cause disease, yet details of how protein synthesis is regulated in this organelle remain to be unveiled. Ribosome production in all organisms studied thus far entails a complex, multistep pathway involving a number of auxiliary factors. This includes several RNA processing and modification steps required for correct rRNA maturation. Little is known about the maturation of human mitochondrial 16S rRNA and its role in biogenesis of the mitoribosome. Here we investigate two methyltransferases, MRM2 (also known as RRMJ2, encoded by FTSJ2) and MRM3 (also known as RMTL1, encoded by RNMTL1), that are responsible for modification of nucleotides of the 16S rRNA A-loop, an essential component of the peptidyl transferase center. Our studies show that inactivation of MRM2 or MRM3 in human cells by RNA interference results in respiratory incompetence as a consequence of diminished mitochondrial translation. Ineffective translation in MRM2- and MRM3-depleted cells results from aberrant assembly of the large subunit of the mitochondrial ribosome (mt-LSU). Our findings show that MRM2 and MRM3 are human mitochondrial methyltransferases involved in the modification of 16S rRNA and are important factors for the biogenesis and function of the large subunit of the mitochondrial ribosome.  相似文献   
5.
Wheat blast caused by the hemibiotroph fungal pathogen Magnaporthe oryzae Triticum (MoT) pathotype is a destructive disease of wheat in South America, Bangladesh and Zambia. This study aimed to determine and compare the activities of antioxidant enzymes in susceptible (wheat, maize, barley and swamp rice grass) and resistant (rice) plants when interacting with MoT. The activities of reactive oxygen species-detoxifying enzymes; catalase (CAT), ascorbate peroxidase (APX), glutathione peroxidase (GPX), glutathione S-transferase (GST), peroxidase (POX) were increased in all plants in response to MoT inoculation with a few exceptions. Interestingly, an early and very high activity of CAT was observed within 24 h after inoculation in wheat, barley, maize and swamp rice grass with lower H2O2 concentration. In contrast, an early and high accumulation of H2O2 was observed in rice at 48 hai with little CAT activity only at a later stage of MoT inoculation. The activities of APX, GST and POD were also high at an early stage of infection in rice. However, these enzymes activities were very high at a later stage in wheat, barley, maize and swamp rice grass. The activity of GPX gradually decreased with the increase of time in rice. Taken together, our results suggest that late and early inductions of most of the antioxidant enzyme activities occurs in susceptible and resistant plants, respectively. This study demonstrates some insights into physiological responses of host and non-host plants when interacting with the devastating wheat blast fungus MoT, which could be useful for developing blast resistant wheat.  相似文献   
6.
In present studies, the new optical sensing platform based on optical planar waveguide (OPWG) for sucrose estimation was reported. An evanescent-wave biosensor was designed by using novel agarose–guar gum (AG) biopolymer composite sol–gel with entrapped enzymes (acid invertase (INV) and glucose oxidase (GOD)). Partially purified watermelon invertase isolated from Citrullus vulgaris fruit (specific activity 832 units mg−1) in combination with GOD was physically entrapped in AG sol–gel and cladded on the surface of optical planar waveguide. Na+–K+ ion-exchanged glass optical waveguides were prepared and employed for the fabrication of sucrose biosensor. By addressing the enzyme modified waveguide structure with, the optogeometric properties of adsorbed enzyme layer (12 μm) at the sensor solid–liquid interface were studied. The OPWG sensor with short response time (110 s) was characterized using the 0.2 M acetate buffer, pH 5.5. The fabricated sucrose sensor showed concentration dependent linear response in the range 1 × 10−10 to 1 × 10−6 M of sucrose. Lower limit of detection of this novel AG–INV–GOD cladded OPWG sensor was found to be 2.5 × 10−11 M sucrose, which indicates that the developed biosensor has higher sensitivity towards sucrose as compared to earlier reported sensors using various transducer systems. Biochips when stored at room temperature, showed high stability for 81 days with 80% retention of original sensitivity. These sucrose sensing biochips showed good operational efficiency for 10 cycles. The proper confinement of acid invertase and glucose oxidase in hydrogel composite was confirmed by scanning electron microscopy (SEM) images. The constructed OPWG sensor is versatile, easy to fabricate and can be used for sucrose measurements with very high sensitivity.  相似文献   
7.
Algae are capable of accumulating nutrients from aqueous waste, which makes them a potential fertilizer. The ability of the fast growing Chlorella vulgaris strain IPPAS C1 to accumulate phosphorus (P) was probed in V-shaped plastic foil photobioreactors. The P uptake was 0.13–0.53 g(P)·m?2·day?1 when the algal culture densities were kept between 0.1 and 1.0 g(DW)·L?1 in a typical summer irradiance of Central Europe. The algal biomass can be effectively utilized for soil fertilization only if the algal cells release nutrients into the soil in a form that would be available to roots and at a rate sufficient to support plant growth. To examine this, we compared the growth of wheat, Triticum aestivum L., in two nutrient-deficient substrates: “Null Erde” and sand, with and without fertilization by wet and spray-dried algae. Plants grown in the two nutrient-deficient substrates supplemented by mineral fertilizer served as a control representing optimal nutrient supply. Plants grown in a high-nutrient substrate (SoMi 513) were used as an additional reference representing the maximum growth potential of wheat. Wheat growth was monitored for 8 weeks and measured, including the increase of the leaf area as well as shoot and root dry weight in 10 randomized replicates for each substrate and fertilization variant. After harvest, the biomass and N, P, and C contents of the plant shoots and roots were recorded. Algae fertilization of “Null Erde” led to wheat growth, including root hair production, which was similar to mineral-fertilized “Null Erde” and only slightly less vigorous than in the nutrient-rich SoMi 513 substrate. The plants grown in sand were smaller than the plants in “Null Erde” but fertilization by algae nevertheless led to growth that was comparable to mineral fertilizer. These results unambiguously demonstrate that algal biomass is a viable option for delivering nutrients to support agriculture on marginal soils.  相似文献   
8.
9.
10.
Eukaryotic cells utilize oxygen for different functions of cell organelles owing to cellular survival. A balanced oxygen homeostasis is an essential requirement to maintain the regulation of normal cellular systems. Any changes in the oxygen level are stressful and can alter the expression of different homeostasis regulatory genes and proteins. Lack of oxygen or hypoxia results in oxidative stress and formation of hypoxia inducible factors (HIF) and reactive oxygen species (ROS). Substantial cellular damages due to hypoxia have been reported to play a major role in various pathological conditions. There are different studies which demonstrated that the functions of cellular system are disrupted by hypoxia. Currently, study on cellular effects following hypoxia is an important field of research as it not only helps to decipher different signaling pathway modulation, but also helps to explore novel therapeutic strategies. On the basis of the beneficial effect of hypoxia preconditioning of cellular organelles, many therapeutic investigations are ongoing as a promising disease management strategy in near future. Hence, the present review discusses about the effects of hypoxia on different cellular organelles, mechanisms and their involvement in the progression of different diseases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号