首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   47篇
  免费   1篇
  2018年   2篇
  2016年   2篇
  2014年   5篇
  2013年   1篇
  2012年   5篇
  2011年   4篇
  2010年   3篇
  2009年   1篇
  2008年   1篇
  2007年   3篇
  2006年   2篇
  2005年   1篇
  2004年   1篇
  2002年   1篇
  1997年   3篇
  1995年   2篇
  1994年   2篇
  1991年   2篇
  1985年   1篇
  1978年   1篇
  1945年   1篇
  1941年   1篇
  1939年   1篇
  1926年   1篇
  1921年   1篇
排序方式: 共有48条查询结果,搜索用时 31 毫秒
1.
The effects of lead on Ca2+ homeostasis in nerve terminals was studied. Incubation with leadin vitro stimulated the activity of calmodulin and the maximum effect was observed at 30 M lead, higher concentrations had an inhibitory effect.In vivo exposure to lead increased the activity of calmodulin by 45%. Lead had an inhibitory effect on Ca2+ ATPase activity in both calmodulin-rich and calmodulin-depleted synaptic plasma membranes, the IC50 values for inhibition being 13.34 and 16.69 M respectively. Exogenous addition of calmodulin (5 g) and glutathione (1 mM) to calmodulin rich synaptic plasma membranes reversed the inhibition by IC50 concentration of lead.In vivo exposure of lead also significantly reduced the Ca2+ ATPase activity, resulting in an increase in intrasynaptosomal calcium. Concomitant with the increase in intrasynaptosomal calcium, lipid peroxidation values also increased significantly in lead-treated animals. In addition lead also had an inhibitory effect on depolarization induced Ca2+ uptake and the inhibition was found to be a competitive one. The results sugest that lead exerts its toxic effects by modifications of the intracellular calcium messenger system which would have serious consequences on neuronal functioning.  相似文献   
2.
3.
Previously, we reported an acidification-dependent interaction of the endosomal vacuolar H+-ATPase (V-ATPase) with cytohesin-2, a GDP/GTP exchange factor (GEF), suggesting that it functions as a pH-sensing receptor. Here, we have studied the molecular mechanism of signaling between the V-ATPase, cytohesin-2, and Arf GTP-binding proteins. We found that part of the N-terminal cytosolic tail of the V-ATPase a2-subunit (a2N), corresponding to its first 17 amino acids (a2N(1–17)), potently modulates the enzymatic GDP/GTP exchange activity of cytohesin-2. Moreover, this peptide strongly inhibits GEF activity via direct interaction with the Sec7 domain of cytohesin-2. The structure of a2N(1–17) and its amino acids Phe5, Met10, and Gln14 involved in interaction with Sec7 domain were determined by NMR spectroscopy analysis. In silico docking experiments revealed that part of the V-ATPase formed by its a2N(1–17) epitope competes with the switch 2 region of Arf1 and Arf6 for binding to the Sec7 domain of cytohesin-2. The amino acid sequence alignment and GEF activity studies also uncovered the conserved character of signaling between all four (a1–a4) a-subunit isoforms of mammalian V-ATPase and cytohesin-2. Moreover, the conserved character of this phenomenon was also confirmed in experiments showing binding of mammalian cytohesin-2 to the intact yeast V-ATPase holo-complex. Thus, here we have uncovered an evolutionarily conserved function of the V-ATPase as a novel cytohesin-signaling receptor.  相似文献   
4.
Camenisch U  Dip R  Vitanescu M  Naegeli H 《DNA Repair》2007,6(12):1819-1828
The presumed DNA-binding cleft of xeroderma pigmentosum group A (XPA) protein, a key regulatory subunit of the eukaryotic nucleotide excision repair complex, displays a distinctive array of 6 positively charged amino acid side chains. Here, the molecular function of these closely spaced electropositive residues has been tested by systematic site-directed mutagenesis. After the introduction of single amino acid substitutions, the mutants were probed for protein-DNA interactions in electrophoretic mobility shift and photochemical crosslinking assays. This analysis led to the identification of a critical hot-spot for DNA substrate recognition composed of two neighboring lysines at codons 141 and 179 of the human XPA sequence. The replacement of other basic side chains in the DNA interaction domain conferred more moderate defects of substrate binding. When the function of XPA was tested as a fusion product with either mCherry or green-fluorescent protein, a glutamate substitution of one of the positively charged residues at positions 141 and 179 was sufficient to decrease DNA repair activity in human fibroblasts. Thus, the removal of a single cationic side chain abolished DNA-binding activity and significant excision repair defects could be induced by single charge inversions on the XPA surface, indicating that this molecular sensor participates in substrate recognition by monitoring the electrostatic potential of distorted DNA repair sites.  相似文献   
5.
V-ATPase is a multisubunit membrane complex that functions as nanomotor coupling ATP hydrolysis with proton translocation across biological membranes. Recently, we uncovered details of the mechanism of interaction between the N-terminal tail of the V-ATPase a2-subunit isoform (a2N1–402) and ARNO, a GTP/GDP exchange factor for Arf-family small GTPases. Here, we describe the development of two methods for preparation of the a2N1–402 recombinant protein in milligram quantities sufficient for further biochemical, biophysical, and structural studies. We found two alternative amphiphilic chemicals that were required for protein stability and solubility during purification: (i) non-detergent sulfobetaine NDSB-256 and (ii) zwitterionic detergent FOS-CHOLINE®12 (FC-12). Moreover, the other factors including mild alkaline pH, the presence of reducing agents and the absence of salt were beneficial for stabilization and solubilization of the protein. A preparation of a2N1–402 in NDSB-256 was successfully used in pull-down and BIAcore™ protein–protein interaction experiments with ARNO, whereas the purity and quality of the second preparation in FC-12 was validated by size-exclusion chromatography and CD spectroscopy. Surprisingly, the detergent requirement for stabilization and solubilization of a2N1–402 and its cosedimentation with liposomes were different from peripheral domains of other transmembrane proteins. Thus, our data suggest that in contrast to current models, so called “cytosolic” tail of the a2-subunit might actually be embedded into and/or closely associated with membrane phospholipids even in the absence of any obvious predicted transmembrane segments. We propose that a2N1–402 should be categorized as an integral monotopic domain of the a2-subunit isoform of the V-ATPase.  相似文献   
6.

Background

Human serum paraoxonase-1 (PON1) prevents oxidation of low density lipoprotein cholesterol (LDL-C) and hydrolyzes the oxidized form, therefore preventing the development of atherosclerosis. The polymorphisms of PON1 gene are known to affect the PON1 activity and thereby coronary artery disease (CAD) risk. As studies are lacking in North-West Indian Punjabi''s, a distinct ethnic group with high incidence of CAD, we determined PON1 activity, genotypes and haplotypes in this population and correlated them with the risk of CAD.

Methodology/Principal Findings

350 angiographically proven (≥70% stenosis) CAD patients and 300 healthy controls were investigated. PON1 activity was determined towards paraoxon (Paraoxonase; PONase) and phenylacetate (Arylesterase; AREase) substrates. In addition, genotyping was carried out by using multiplex PCR, allele specific oligonucleotide –PCR and PCR-RFLP methods and haplotyping was determined by PHASE software. The serum PONase and AREase activities were significantly lower in CAD patients as compared to the controls. All studied polymorphisms except L55M had significant effect on PONase activity. However AREase activity was not affected by them. In a logistic regression model, after adjustment for the conventional risk factors for CAD, QR (OR: 2.73 (1.57–4.72)) and RR (OR, 16.24 (6.41–41.14)) genotypes of Q192R polymorphism and GG (OR: 2.07 (1.02–4.21)) genotype of −162A/G polymorphism had significantly higher CAD risk. Haplotypes L-T-G-Q-C (OR: 3.25 (1.72–6.16)) and L-T-G-R-G (OR: 2.82 (1.01–7.80)) were also significantly associated with CAD.

Conclusions

In conclusion this study shows that CAD patients had lower PONase and AREase activities as compared to the controls. The coding Q192R polymorphism, promoter −162A/G polymorphism and L-T-G-Q-C and L-T-G-R-G haplotypes are all independently associated with CAD.  相似文献   
7.

Background  

Eucalypts are the most widely planted hardwood trees in the world occupying globally more than 18 million hectares as an important source of carbon neutral renewable energy and raw material for pulp, paper and solid wood. Quantitative Trait Loci (QTLs) in Eucalyptus have been localized on pedigree-specific RAPD or AFLP maps seriously limiting the value of such QTL mapping efforts for molecular breeding. The availability of a genus-wide genetic map with transferable microsatellite markers has become a must for the effective advancement of genomic undertakings. This report describes the development of a novel set of 230 EMBRA microsatellites, the construction of the first comprehensive microsatellite-based consensus linkage map for Eucalyptus and the consolidation of existing linkage information for other microsatellites and candidate genes mapped in other species of the genus.  相似文献   
8.
Gupta N  Binu KB  Singh S  Maturu NV  Sharma YP  Bhansali A  Gill KD 《Gene》2012,491(1):13-19
Posttranslational modifications of proteins have profound effects on many aspects of their function and have received much attention due to the importance of these processes in epigenetic regulation. In this study, we report that deleted azoospermia associated protein 1 (DAZAP1)/proline-rich RNA binding protein (Prrp), a multifunctional RNA binding protein which is essential for spermatogenesis and normal cell growth, is acetylated at Lysine 150 within its RNA binding domain. The acetylation is predominantly observed in nuclear Prrp, and the nonacetylated form is in cytoplasm. Considering that Prrp is a shuttling protein, we suggest that the acetylation cycle at Prrp K150 regulates nucleocytoplasmic transport in cells.  相似文献   
9.
An endophytic fungus having antifungal and antibacterial properties was isolated from Taxus wallichiana of Arunachal Pradesh, India. On the basis of morphological and molecular characteristics, the fungus was identified as Fusarium sp. and designated as DF2. The fungus was optimized for growth and maximum production of the antimicrobial agent. Media with 5% leaf extract (w/v) supplemented with 0.1% dextrose as carbon and yeast extract as nitrogen source favored the growth with temperature optimum 25 ± 2°C and pH 6. Incubation period of 10 days was observed optimum for growth and production of antimicrobial agent. Phenylalanine and dextrose enriched basal medium promoted the antimicrobial agent production, whereas methionine amended in combination with glucose promoted higher biomass accumulation. The TLC purified active compound with UV λ-max 270 nm in ethyl acetate has got the lowest minimum inhibitory concentration (MIC) against Bacillus subtilis, Staphylococcus aureus and Escherichia coli and highest against Pseudomonas aeruginosa.  相似文献   
10.
Mature larvae of Antheraea assamensis were collected from different locations of Assam to isolate the cellulolytic gut microflora. Altogether sixty cellulase degrading bacteria were isolated on agar plates containing microcrystalline cellulose as the sole carbon source. Among them, ten isolates showed hydrolyzing zone on agar plates containing carboxy methyl cellulose (CMC) after staining with Congo-red. Isolate MGB05 exhibited the highest CMCase activity (0.262?U/mL) at 72?h of incubation under submerged condition. FPase and β-glucosidase activity were 0.012?U/mL and 3.71?U/mL respectively. It showed maximum FPase (0.022?U/mL) activity on the 3rd day of incubation in the media containing wheat bran as a carbon source. β-glucosidase production was also found to be highest with wheat bran (20.03?U/mL) at 48?h of incubation. The optimum pH and temperature of FPase activity of MGB05 were found at 6.0 and 50?°C respectively while for β-glucosidase activity, it was maximum at pH?6.0 under 50?°C. In addition, metal ion Mg++ and Ca++ enhanced FPase activity up to 110.92% (0.026?U/mL) and 105.31% (0.025?U/mL) respectively. In-vitro antimicrobial bioassay of the most potent cellulolytic bacteria (MGB05) also showed high antimicrobial activity against Escherichia coli (2.9?cm) and Pseudomonas aeruginosa (3.0?cm). The isolate MGB05 has been identified based on 16S rDNA homology as Bacillus pumilus MGB05 with accession KP298708.2. Results encompass the prospective beneficial role of gut-microflora on digestion and disease resistance, which might be a potential probiotic component to enhance silk productivity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号