首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   5篇
  2014年   1篇
  2012年   1篇
  2011年   1篇
  2010年   3篇
  2008年   3篇
  2007年   2篇
  2006年   1篇
  2005年   1篇
  2003年   1篇
  2002年   3篇
  2000年   2篇
  1998年   1篇
  1995年   1篇
  1992年   1篇
  1990年   1篇
  1988年   1篇
  1986年   1篇
  1985年   3篇
  1983年   1篇
排序方式: 共有29条查询结果,搜索用时 265 毫秒
1.
Agrobacterium rhizogenes induces root formation and inserts a fragment of its plasmid into the genome of infected plants. A part of the transferred region (TL-region) of the Ri plasmid of A. rhizogenes strain A4 was cloned in pBR322. Insertions of the Escherichia coli lacZ coding region into the hybrid plasmids were made in vivo using mini-Mu-duction. Two mini-Mus were used, one with the Mu A and B transposase genes (MudII1681) and the other without (MudII1734). Two inserts which result in E. coli lacZ expression where shown to be located in the T-DNA region. This indicates that portions of the T-DNA are capable of expression in bacteria. When these two hybrid plasmids were transformed into Agrobacterium only the one harboring MudII1734 insert gave transformants which correspond to homologous recombination. These results indicate that gene fusion and insertion directed mutagenesis can be simultaneously obtained with this mini-Mu and could be used to study Agrobacterium gene expression.  相似文献   
2.
Erwinia chrysanthemi 3937 secretes four major pectate lyase isoenzymes (PL, EC 4.2.2.2) and one endocellulase (Cx, EC 3.2.1.4). A genomic library of this strain was constructed in the Lambda L47-1 vector, and screened for the presence of PL and Cx on pectate and caboxymethylcellulose agar. Among the seven Cx-positive phage clones, three were shown to encode an enzyme of the same mol. wt. as the one found in the culture supernatant of strain 3937. The 34 PL-positive phage clones were analyzed by electrofocusing and could, according to the PL they produced, be arranged in five classes. Phages from three classes produced three different single PL, named PLb, c and d. No common fragment was evidenced between the inserts of the phages of these three classes. This demonstrated that, in strain 3937, PLb, C, and d were encoded by three different genes called pelB, C, and D. Furthermore, our results suggest the existence of two additional genes encoding PLa and e. In addition, a pectin methylesterase gene was found closely linked to pelD.  相似文献   
3.
Mitochondrial role in ceramide-induced apoptosis pathway remains unclear. Direct effects of ceramide on mitochondria (cytochrome c release, respiratory chain inhibition, oxygen radicals production...) have been reported [1, 2] and we previously showed that addition of ceramide to intact cells or isolated mitochondria triggers mitochondrial swelling which appeared to be insensitive to cyclosporin A (CsA) [3, 4]. The purpose of this work was to determine to which extent this CsA-insensitive mitochondrial swelling, therefore distinct from permeability transition, participates to ceramide-induced apoptosis. To achieve this, we applied Top-Down analysis of integrated mitochondrial function [5], in order to better understand ceramide-induced mitochondrial dysfunctions.  相似文献   
4.
The application of a heat shock on the human microglial cell line (CHME 5) has been shown to cause cytoskeleton modifications and alterations in phosphorylated metabolite content (Macouillard-Poulletier de Gannes et al., 1998a Metabolic and cellular characterization of immortalized human microglial cells under heat stress. Neurochem. Int. 33, 61-73). In this study, we focused on the possible involvement of mitochondria in this heat stress response. The cell respiratory properties were followed during the recovering period and the possible relationships between mitochondria and the cytoskeleton were studied. We observed that the heat shock induced changes in mitochondrial activity due to protein denaturation, rather than mitochondrial loss. Furthermore, these alterations were correlated with cytoskeleton disorganization since vimentine, tubuline and mitochondria shift, simultaneously, to a perinuclear location. The perturbations of the mitochondrial distribution persisted until cytoskeleton networks had recovered. Nevertheless, the respiratory properties recovered rapidly suggesting a renaturation of mitochondrial proteins in connection with mitochondrial cytoplasmic redistribution.  相似文献   
5.
TNFR1/Fas engagement results in the cleavage of cytosolic Bid to truncated Bid (tBid), which translocates to mitochondria. We demonstrate that recombinant tBid induces in vitro immediate destabilization of the mitochondrial bioenergetic homeostasis. These alterations result in mild uncoupling of mitochondrial state-4 respiration, associated with an inhibition the adenosine diphosphate (ADP)-stimulated respiration and phosphorylation rate. tBid disruption of mitochondrial homeostasis was inhibited in mitochondria overexpressing Bcl-2 and Bcl-XL. The inhibition of state-3 respiration is mediated by the reorganization of cardiolipin within the mitochondrial membranes, which indirectly affects the activity of the ADP/ATP translocator. Cardiolipin-deficient yeast mitochondria did not exhibit any respiratory inhibition by tBid, proving the absolute requirement for cardiolipin for tBid binding and activity. In contrast, the wild-type yeast mitochondria underwent a similar inhibition of ADP-stimulated respiration associated with reduced ATP synthesis. These events suggest that mitochondrial lipids rather than proteins are the key determinants of tBid-induced destabilization of mitochondrial bioenergetics.  相似文献   
6.
S6 kinase (S6K) deletion in metazoans causes small cell size, insulin hypersensitivity, and metabolic adaptations; however, the underlying molecular mechanisms are unclear. Here we show that S6K-deficient skeletal muscle cells have increased AMP and inorganic phosphate levels relative to ATP and phosphocreatine, causing AMP-activated protein kinase (AMPK) upregulation. Energy stress and muscle cell atrophy are specifically triggered by the S6K1 deletion, independent of S6K2 activity. Two known AMPK-dependent functions, mitochondrial biogenesis and fatty acid β-oxidation, are upregulated in S6K-deficient muscle cells, leading to a sharp depletion of lipid content, while glycogen stores are spared. Strikingly, AMPK inhibition in S6K-deficient cells restores cell growth and sensitivity to nutrient signals. These data indicate that S6K1 controls the energy state of the cell and the AMPK-dependent metabolic program, providing a mechanism for cell mass accumulation under high-calorie diet.  相似文献   
7.
8.
Some historical aspects of development of the concepts of functional coupling, metabolic channelling, compartmentation and energy transfer networks are reviewed. Different quantitative approaches, including kinetic and mathematical modeling of energy metabolism, intracellular energy transfer and metabolic regulation of energy production and fluxes in the cells in vivo are analyzed. As an example of the system with metabolic channelling, thermodynamic aspects of the functioning the mitochondrial creatine kinase functionally coupled to the oxidative phosphorylation are considered. The internal thermodynamics of the mitochondrial creatine kinase reaction is similar to that for other isoenzymes of creatine kinase, and the oxidative phosphorylation process specifically influences steps of association and dissociation of MgATP with the enzyme due to channelling of ATP from adenine nucleotide translocase. A new paradigm of muscle bioenergetics - the paradigm of energy transfer and feedback signaling networks based on analysis of compartmentation phenomena and structural and functional interactions in the cell is described. Analysis of the results of mathematical modeling of the compartmentalized energy transfer leads to conclusion that both calcium and ADP, which concentration changes synchronously in contraction cycle, may simultaneously activate oxidative phosphorylation in the muscle cells in vivo. The importance of the phosphocreatine circuit among other pathways of intracellular energy transfer network is discussed on the basis of the recent data published in the literature, with some experimental demonstration. The results of studies of perfused rat hearts with completely inhibited creatine kinase show significantly decreased work capacity and respectively, energy fluxes, in these hearts in spite of significant activation of adenylate kinase system (Dzeja et al. this volume). These results, combined with those of mathematical analysis of the energy metabolism of hearts of transgenic mice with switched off creatine kinase isoenzymes confirm the importance of phosphocreatine pathway for energy transfer for cell function and energetics in mature heart and many other types of cells, as one of major parts of intracellular energy transfer network and metabolic regulation.  相似文献   
9.
The pelC gene, which encodes one of the five major pectate lyase (PL) isoenzymes in Erwinia chrysanthemi 3937, designated PLc, was subcloned from a hybrid lambda phage into a pBR322 derivative and mutagenized with a mini-Mu-lacZ transposable element able to form fusions to the lacZ gene. One plasmid (pAD1) which had an inactivated pelC gene and a Lac+ phenotype was selected in Escherichia coli. This plasmid was introduced into Erwinia chrysanthemi, and the pelC::mini-Mu insertion was substituted for the chromosomal allele by homologous recombination. This strain lacks the PLc isoenzyme. This Erwinia chrysanthemi strain has a Lac+ phenotype that is inducible by polygalacturonate, as are the wild-type PL activities.  相似文献   
10.
Control over oxidative phosphorylation by purified potato mitochondria was determined using the top-down approach of metabolic control analysis. The control over the respiration rate, phosphorylation rate, proton-leak rate and proton motive force exerted by the respiratory chain, phosphorylation reactions and the proton leak were measured over a range of phosphorylation rates from resting (state 4) to maximal (state 3). These rates were obtained by adding different amounts of hexokinase in the presence of glucose, or different amounts of oligomycin in the presence of ADP. The respiratory substrate was NADH or succinate, both of which feed electrons directly to ubiquinone. The rate of oxygen consumption by the alternative oxidase pathway was negligible with NADH as substrate but was measurable with succinate and was subtracted. Control over the respiration rate in potato mitochondria was predominantly exerted by the respiratory chain at all rates except close to state 4, where control by the proton leak was equally or more important. For oxidation of NADH, the flux control coefficient over the respiration rate exerted by the respiratory chain in state 3 was between 0.8 and 1.0, while in state 4, control over the respiration rate was shared about equally between the chain and the proton leak. The control over the phosphorylation rate was predominantly exerted by the respiratory chain, although at low rates control by the phosphorylation system was also important. For oxidation of NADH, the flux control coefficient over the phosphorylation rate exerted by the respiratory chain in state 3 was 0.8-1.0, while near state 4 the flux control coefficients over the phosphorylation rate were about 0.8 for the phosphorylation system and 0.25 for the chain. Control over the proton leak rate was shared between the respiratory chain and the proton leak; the phosphorylation system had negative control. For oxidation of NADH, the flux control coefficients over the leak rate in state 3 were 1.0 for the leak, 0.4 for the chain and -0.4 for the phosphorylation system, while in state 4 the flux control coefficients over leak rate were about 0.5 for the leak and 0.5 for the chain. Control over the magnitude of the protonmotive force was small, between -0.2 and +0.2, reflecting the way the system operates to keep the protonmotive force fairly constant; the respiratory chain and the phosphorylation system had equal and opposite control and there was very little control by the proton leak except near state 4.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号