首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   111篇
  免费   14篇
  125篇
  2024年   1篇
  2016年   2篇
  2015年   1篇
  2014年   1篇
  2013年   2篇
  2012年   3篇
  2011年   6篇
  2010年   3篇
  2009年   3篇
  2008年   7篇
  2007年   1篇
  2006年   2篇
  2005年   2篇
  2004年   8篇
  2003年   5篇
  2002年   7篇
  2001年   6篇
  2000年   3篇
  1999年   1篇
  1998年   2篇
  1996年   3篇
  1995年   3篇
  1994年   2篇
  1993年   1篇
  1992年   3篇
  1991年   7篇
  1990年   7篇
  1989年   1篇
  1988年   4篇
  1987年   5篇
  1986年   1篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1979年   5篇
  1933年   2篇
  1931年   1篇
  1930年   1篇
  1929年   2篇
  1927年   1篇
  1923年   1篇
  1922年   1篇
  1915年   1篇
  1907年   1篇
排序方式: 共有125条查询结果,搜索用时 0 毫秒
1.
Nucleoplasmin: the archetypal molecular chaperone   总被引:7,自引:0,他引:7  
Nucleoplasmin was the first protein to be described as a molecular chaperone. Studies of nucleoplasmin have resulted in advances in two areas of cell biology. Firstly, the pathway of nucleosome assembly in Xenopus oocytes and eggs has been elucidated and is the only assembly pathway known in detail. Nucleosome assembly represents the major chaperoning function of nucleoplasmin. Secondly, nucleoplasmin has been used to elucidate the transport of proteins into the nucleus, revealing a selective entry mechanism for nuclear proteins, passage through the nuclear pore complex, and a two-step mechanism of transport. The properties and functions of nucleoplasmin are reviewed, together with other proteins which are related either structurally or functionally to nucleoplasmin.  相似文献   
2.
Human HtrA2 is a novel member of the HtrA serine protease family and shows extensive homology to the Escherichia coli HtrA genes that are essential for bacterial survival at high temperatures. HumHtrA2 is also homologous to human HtrA1, also known as L56/HtrA, which is differentially expressed in human osteoarthritic cartilage and after SV40 transformation of human fibroblasts. HumHtrA2 is upregulated in mammalian cells in response to stress induced by both heat shock and tunicamycin treatment. Biochemical characterization of humHtrA2 shows it to be predominantly a nuclear protease which undergoes autoproteolysis. This proteolysis is abolished when the predicted active site serine residue is altered to alanine by site-directed mutagenesis. In human cell lines, it is present as two polypeptides of 38 and 40 kDa. HumHtrA2 cleaves beta-casein with an inhibitor profile similar to that previously described for E. coli HtrA, in addition to an increase in beta-casein turnover when the assay temperature is raised from 37 to 45 degrees C. The biochemical and sequence similarities between humHtrA2 and its bacterial homologues, in conjunction with its nuclear location and upregulation in response to tunicamycin and heat shock suggest that it is involved in mammalian stress response pathways.  相似文献   
3.
4.
Generation of the amyloid peptide through proteolytic processing of the amyloid precursor protein by beta- and gamma-secretases is central to the etiology of Alzheimer's disease. beta-secretase, known more widely as the beta-site amyloid precursor protein cleaving enzyme 1 (BACE1), has been identified as a transmembrane aspartic proteinase, and its ectodomain has been reported to be cleaved and secreted from cells in a soluble form. The extracellular domains of many diverse proteins are known to be cleaved and secreted from cells by a process known as ectodomain shedding. Here we confirm that the ectodomain of BACE1 is secreted from cells and that this processing is up-regulated by agents that activate protein kinase C. A metalloproteinase is involved in the cleavage of BACE1 as hydroxamic acid-based metalloproteinase inhibitors abolish the release of shed BACE1. Using potent and selective inhibitors, we demonstrate that ADAM10 is a strong candidate for the BACE1 sheddase. In addition, we show that the BACE1 sheddase is distinct from alpha-secretase and, importantly, that inhibition of BACE1 shedding does not influence amyloid precursor protein processing at the beta-site.  相似文献   
5.
6.
7.
8.

Background  

The pathogenetic mechanisms that underlie the interstitial lung disease cryptogenic fibrosing alveolitis (CFA) may involve an immunological reaction to unidentified antigens in the lung, resulting in tissue damage.  相似文献   
9.
The inhibitor-of-apoptosis proteins (IAPs) play a critical role in the regulation of apoptosis by binding and inhibiting caspases. Reaper family proteins and Smac/DIABLO use a conserved amino-terminal sequence to bind to IAPs in flies and mammals, respectively, blocking their ability to inhibit caspases and thus promoting apoptosis. Here we have identified the serine protease Omi/HtrA2 as a second mammalian XIAP-binding protein with a Reaper-like motif. This protease autoprocesses to form a protein with amino-terminal homology to Smac/DIABLO and Reaper family proteins. Full-length Omi/HtrA2 is localized to mitochondria but fails to interact with XIAP. Mitochondria also contain processed Omi/HtrA2, which, following apoptotic insult, translocates to the cytosol, where it interacts with XIAP. Overexpression of Omi/HtrA2 sensitizes cells to apoptosis, and its removal by RNA interference reduces cell death. Omi/HtrA2 thus extends the set of mammalian proteins with Reaper-like function that are released from the mitochondria during apoptosis.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号