首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27780篇
  免费   1972篇
  国内免费   2109篇
  31861篇
  2024年   68篇
  2023年   418篇
  2022年   876篇
  2021年   1495篇
  2020年   939篇
  2019年   1245篇
  2018年   1145篇
  2017年   808篇
  2016年   1191篇
  2015年   1660篇
  2014年   2058篇
  2013年   2187篇
  2012年   2546篇
  2011年   2275篇
  2010年   1414篇
  2009年   1235篇
  2008年   1391篇
  2007年   1193篇
  2006年   1010篇
  2005年   876篇
  2004年   730篇
  2003年   662篇
  2002年   567篇
  2001年   454篇
  2000年   439篇
  1999年   444篇
  1998年   297篇
  1997年   291篇
  1996年   271篇
  1995年   223篇
  1994年   216篇
  1993年   161篇
  1992年   209篇
  1991年   179篇
  1990年   165篇
  1989年   126篇
  1988年   83篇
  1987年   65篇
  1986年   50篇
  1985年   68篇
  1984年   28篇
  1983年   39篇
  1982年   20篇
  1981年   11篇
  1980年   9篇
  1979年   10篇
  1978年   2篇
  1977年   3篇
  1976年   2篇
  1950年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
The functioning of the vertebrate eye depends on its absolute size, which is presumably adapted to specific needs. Eye size variation in lidless and spectacled colubrid snakes was investigated, including 839 specimens belonging to 49 genera, 66 species and subspecies. Variations of adult eye diameters (EDs) in both absolute and relative terms between species were correlated with parameters reflecting behavioral ecology. In absolute terms, eye of arboreal species was larger than in terrestrial and semiaquatic species. For diurnal species, EDs of terrestrial species do not differ from semiaquatic species; for nocturnal species the ED of terrestrial species is larger than fossorial species but not different from semiaquatic species. In relative terms, ED did not differ significantly by habitat for diurnal species. Although the ED of terrestrial species is larger than fossorial species there were no differences for nocturnal species between semiaquatic and fossorial snakes. In contrast to other vertebrates studied to date, colubrid EDs in absolute and relative terms are larger in diurnal than in nocturnal species. These observations suggest that among colubrid snakes, eye size variation reflects adaptation to specific habitats, foraging strategies and daily activities, independently of phylogeny. J. Morphol. 2012. © 2012 Wiley Periodicals, Inc.  相似文献   
2.
We developed an apparatus to quantify the biomechanical behavior of the dorsi- and plantarflexor muscles of the ankle of an anesthetized mouse. When the dorsi- or plantarflexor muscle group is activated by electrical stimulation of either the peroneal or tibial nerve, the apparatus measures the moment developed about the ankle during isometric, isovelocity shortening, or isovelocity lengthening contractions. Displacements may be performed over the full 105 degrees range of ankle motion with an angular resolution of 0.09 degrees. Bidirectional isovelocity ramps in ankle angle up to 1,100 degrees/s are possible and are equivalent to maximum velocities of 2.3 fiber lengths/s (Lf/s) for the fibers in tibialis anterior muscle and 11.9 Lf/s for those in gastrocnemius muscle. During single contractions of the dorsi- and plantarflexor muscle groups at 37 degrees C and with both knee and ankle joint at 90 degrees neutral position, the isometric tetanic force developed was 1.4 and 3.3 N, power output at 2.2 Lf/s was 3.1 and 5.9 mW, and power absorption at 0.5 Lf/s was 4.9 and 9.0 mW, respectively. These values are in reasonable agreement with data from the same muscle groups tested in situ. We conclude that the apparatus provides valid measurements of force and power of the dorsi- and plantarflexor muscle groups.  相似文献   
3.
Type III glycogen storage disease is caused by a deficiency of glycogen debranching-enzyme activity. Many patients with this disease have both liver and muscle involvement, whereas others have only liver involvement without clinical or laboratory evidence of myopathy. To improve our understanding of the molecular basis of the disease, debranching enzyme was purified 238-fold from porcine skeletal muscle. In sodium dodecyl sulfate-polyacrylamide gel electrophoresis the purified enzyme gave a single band with a relative molecular weight of 160,000 that migrated to the same position as purified rabbit-muscle debranching enzyme. Antiserum against porcine debranching enzyme was prepared in rabbit. The antiserum reacted against porcine debranching enzyme with a single precipitin line and demonstrated a reaction having complete identity to those of both the enzyme present in crude muscle and the enzyme present in liver extracts. Incubation of antiserum with purified porcine debranching enzyme inhibited almost all enzyme activity, whereas such treatment with preimmune serum had little effect. The antiserum also inhibited debranching-enzyme activity in crude liver extracts from both pigs and humans to the same extent as was observed in muscle. Immunoblot analysis probed with anti-porcine-muscle debranching-enzyme antiserum showed that the antiserum can detect debranching enzyme in both human muscle and human liver. The bands detected in human samples by the antiserum were the same size as the one detected in porcine muscle. Five patients with Type III and six patients with other types of glycogen storage disease were subjected to immunoblot analysis. Although anti-porcine antiserum detected specific bands in all liver and muscle samples from patients with other types of glycogen storage disease (Types I, II, and IX), the antiserum detected no cross-reactive material in any of the liver or muscle samples from patients with Type III glycogen storage disease. These data indicate (1) immunochemical similarity of debranching enzyme in liver and muscle and (2) that deficiency of debranching-enzyme activity in Type III glycogen storage disease is due to absence of debrancher protein in the patients that we studied.  相似文献   
4.
Ischemic stroke is a major composition of cerebrovascular disease, seriously threatening to human health in the world. Activin A (ActA), belonging to transforming growth factor-beta (TGF-β) super family, plays an important role in the hypoxic-ischemic brain injury through ActA/Smads pathway. While as an essential phosphorylation assistor in TGF-β signaling, the functions and mechanisms of smad anchor for receptor activation (SARA) in ischemic brain injury remain poorly understood. To solve this problem and explore the pathological processes of ischemic stroke, we used an Oxygen–Glucose deprivation (OGD) model in nerve growth factor-induced differentiated rattus PC12 pheochromocytoma cells and down regulated the expressions of SARA by RNA interference technology. Our results showed that the repression of SARA before OGD exposure reduced the expressions of Smad2, 3, 4 mRNA and the phosphorylation rate of Smad2 protein, but it did not affect the mRNA expressions of Smad7. After OGD treatment, ActA/Smads pathway was activated and the expression of SARA in the SARA pre-repression group was significantly up-regulated. The pre-repression of SARA increased the sensitivities of nerve-like cells to OGD damage. Moreover, the mRNA expression of Smad7 which was supposed to participate in the negative feedback of ActA/Smads pathway was also elevated due to OGD injury. Taken together, these results suggest a positive role of SARA in assisting the phosphorylation of Smad2 and maintaining the neuron protective effect of ActA/Smads pathway.  相似文献   
5.
6.
Abstract This paper deals in detail with the morphology of the larva of Neopsylla specialis specialis Jordan, 1932. It may be distinguished from other larvae of 5 species or subspecies of Neopsylla by two fine setae lying on outside of each posterior long seta on the ventral plates of the first to third thoracic segments, ratio of the length and width of the egg burster, number and shape of mandibular teeth, number and length of the setae in the anterior and posterior row on dorsal side of head, and number of the setae of anal comb and the strut setae. The sense organs on the 10th tergite are discussed.  相似文献   
7.
Immunotoxins with selective cytotoxicity are frequently used as therapeutic immunosuppressive agents in solid-organ transplantation because of their efficiency and high specificity. In this study, we present a new recombinant immunotoxin termed anti-CTLA-4-scFv–melittin prepared from Escherichia coli aimed at clearing activated T cells at the same time avoiding all-round decline in systematic immunity. This fusion protein is composed of anti-CTLA-4-scFv unit and melittin analog unit with properties of low immunogenicity and selective cytotoxicity to CTLA-4-positive T cells. In preliminary biological activity assays, our results confirmed the feasibility of activated T cell clearance strategy and there were significant differences in cell survival rates between CTLA-4-positive group and control group at all experimental concentrations of the immunotoxin. The selective cytotoxicity, low immunogenicity, and low production cost make it an attractive alternate to traditional immunosuppressants.  相似文献   
8.
9.
10.
Glioblastoma multiforme (GBM) is the most common primary brain cancer in adults and there are few effective treatments. GBMs contain cells with molecular and cellular characteristics of neural stem cells that drive tumour growth. Here we compare responses of human glioblastoma-derived neural stem (GNS) cells and genetically normal neural stem (NS) cells to a panel of 160 small molecule kinase inhibitors. We used live-cell imaging and high content image analysis tools and identified JNJ-10198409 (J101) as an agent that induces mitotic arrest at prometaphase in GNS cells but not NS cells. Antibody microarrays and kinase profiling suggested that J101 responses are triggered by suppression of the active phosphorylated form of polo-like kinase 1 (Plk1) (phospho T210), with resultant spindle defects and arrest at prometaphase. We found that potent and specific Plk1 inhibitors already in clinical development (BI 2536, BI 6727 and GSK 461364) phenocopied J101 and were selective against GNS cells. Using a porcine brain endothelial cell blood-brain barrier model we also observed that these compounds exhibited greater blood-brain barrier permeability in vitro than J101. Our analysis of mouse mutant NS cells (INK4a/ARF−/−, or p53−/−), as well as the acute genetic deletion of p53 from a conditional p53 floxed NS cell line, suggests that the sensitivity of GNS cells to BI 2536 or J101 may be explained by the lack of a p53-mediated compensatory pathway. Together these data indicate that GBM stem cells are acutely susceptible to proliferative disruption by Plk1 inhibitors and that such agents may have immediate therapeutic value.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号