首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   60篇
  免费   7篇
  2014年   1篇
  2012年   1篇
  2010年   1篇
  2008年   1篇
  2003年   1篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1992年   1篇
  1990年   6篇
  1988年   1篇
  1987年   3篇
  1986年   2篇
  1985年   4篇
  1984年   2篇
  1981年   2篇
  1980年   7篇
  1979年   5篇
  1978年   3篇
  1977年   3篇
  1976年   4篇
  1975年   1篇
  1974年   1篇
  1973年   6篇
  1972年   3篇
  1971年   4篇
排序方式: 共有67条查询结果,搜索用时 15 毫秒
1.
Polypeptide composition and endogenous phosphorylation were investigated in the subfractions of rat brain myelin isolated by either discontinuous or continuous sucrose density gradient centrifugation of myelin. Similarly, a myelin-like membrane fraction (SN4) was also studied. Observations were made that strongly indicated the presence of a calcium-stimulated protein kinase in a highly purified myelin preparation and which exclusively phosphorylated myelin basic proteins of the membrane preparation. Adenosine cyclic 3',5'-phosphate (cAMP) stimulated kinase on the other hand was found to be considerably enriched in the myelin-like membrane fraction. Although this latter enzyme is also capable of phosphorylating the basic proteins, its effect was at least 5 times weaker compared to the calcium-stimulated myelin protein kinase. Within the gradient subfractions there appeared a close relation between the amount of basic proteins and their calcium-stimulated phosphorylation; a similar relationship, however, was not obtained in the case of cAMP-dependent phosphorylation of myelin basic proteins. The former (i.e., Ca2+-stimulated phosphorylation) was found to require a protein factor that functionally resembled calmodulin. The results thus raises an interesting possibility of the presence of calmodulin-like proteins and a calcium-stimulated protein kinase in adult myelin membrane from mammalian brain, both of which have been hitherto unrecognized constituents of myelin membranes.  相似文献   
2.
3.
Calcineurin was dissociated into subunits A and B by SDS and the dissociated subunits were separated by Sephadex G-100 column chromatography in SDS. The phosphatase activity was associated with the A subunit and was detected only in the presence of MnCl2 of the various divalent cations tested. The Mn2+-dependent phosphatase of A subunit was stimulated (4-5-fold) by calmodulin. The subunit B increased only modestly Mn2+ stimulated phosphatase activity of subunit A but markedly increased it when assay also contained calmodulin. These results support the view that subunit B plays an important role in Mn2+/calmodulin regulation of subunit A phosphatase activity. They also lend further support to our earlier postulate ([1984] FEBS Lett. 169, 251-255) that Mn2+ is a powerful regulator of calcineurin phosphatase.  相似文献   
4.
Washed membranes isolated from rat cerebral cortex (gray matter) showed the presence of EGTA-inhibitable and EGTA-insensitive forms of adenylate cyclase activity. The former activity was stimulated by low concentrations (microM) of various divalent cations (Mn2+, Ca2+, Co2+ and Sr2+) assayed with MgATP2- and MgCl2. At higher concentrations (mM), only Mn2+ stimulated this enzyme whereas Ca2+, Co2+ and Sr2+ were inhibitory. Alamethicin markedly (up to 30-fold) increased the activity of EGTA-inhibitable form and only moderately of EGTA-insensitive form of the enzyme. The increased activity due to alamethicin does not result from solubilization of the enzyme from membranes. Our results suggest the presence of two distinct metal binding sites--one of high (Site I) and other of low (Site II) affinity. Divalent metals via interacting with these produce divergent effects on the enzyme. Site I appears to be located in the hydrophobic region of catalytic unit of the enzyme or of membrane-associated calmodulin. The likely significance of these results is briefly presented.  相似文献   
5.
Protein phosphorylation was investigated in [32P]-labeled cardiomyocytes isolated from adult rat heart ventricles. The -adrenergic stimulation (by isoproterenol, ISO) increased the phosphorylation of inhibitory subunit of troponin (TN-I), C-protein and phospholamban (PLN). Such stimulation was largely mediated by increased adenylyl cyclase (AC) activity, increased myoplasmic cyclic AMP and increased cyclic AMP dependent protein kinase (A-kinase)-catalyzed phosphorylation of these proteins in view of the following observations: (a) dibutyryl-and bromo-derivatives of cyclic AMP mimicked the stimulatory effect of ISO on protein phosphorylation while (b) Rp-cyclic AMP was found to attenuate ISO-dependent stimulation. Unexpectedly, 8-bromo cyclic GMP was found to markedly increase TN-I and PLN phosphorylation. Both 1- and 2-adrenoceptors were present and ISO binding to either receptor was found to stimulate myocyte AC. However, the stimulation of the 2-AR only marginally increased while the stimulation of 1-AR markedly increased PLN phosphorylation. Other stimuli that increase tissue cyclic AMP levels also increased PLN and TN-I phosphorylation and these included isobutylmethylxanthine (non-specific phosphodiesterase inhibitor), milrinone (inhibits cardiotonic inhibitable phosphodiesterase, sometimes called type III or IV) and forskolin (which directly stimulates adenylyl cyclase). Cholinergic agonists acting on cardiomyocyte M2-muscarinic receptors that are coupled to AC via pertussis toxin(PT)-sensitive G proteins inhibited AC and attenuated ISO-dependent increases in PLN and TN-I phosphorylation. Thein vivo PT treatment, which ADP-ribosylated Gi-like protein(s) in the myocytes, markedly attenuated muscarinic inhibitory effect on PLN and TN-I phosphorylation on one hand and, increased the -adrenergic stimulation, on the other. Controlled exposure of isolated myocytes to N-ethyl maleimide, also led to the findings similar to those seen following the PT treatment. Exposure of myocytes to phorbol, 12-myristate, 13-acetate (PMA) increased the protein phosphorylation, augmenting the stimulation by ISO, and such augmentation was antagonized by propranolol suggesting modulation of the -adrenoceptor coupled AC pathway by PMA. Okadaic acid (OA) exposure of myocytes also increased protein phosphorylation with the results supporting the roles for type 1 and 2A protein phosphatases in the dephosphorylation of PLN and TN-I. Interestingly OA treatment attenuated the muscarinic inhibitory effect which was restored by subsequent brief exposure of myocytes to PMA. While the stimulation of alpha adrenoceptors exerted little effect on the phosphorylation of PLN and TN-I, inactivation of alpha adrenoceptors by chloroethylclonidine (CEC), augmented -adrenergically stimulated phosphorylation. KCl-dependent depolarization of myocytes was observed to potentiate ISO-dependent increase in phosphorylation (incubation period 15 sec to 1 min) as well as to accelerate the time-dependent decline in this phosphorylation seen upon longer incubation. Verapamil decreased ISO-stimulated protein phosphorylation in the depolarized myocytes. Depolarization was found to have little effect on the muscarinic inhibitory action on phosphorylation. Prior treatment of myocytes with PMA, was found to augment ISO-stimulated protein phosphorylation in the depolarized myocytes. Such augmented increases were completely blocked by propranolol. Forskolin also stimulated PLN and TN-I phosphorylation. Prior exposure of myocytes to forskolin followed by incubation in the depolarized and polarized media showed that PLN was dephosphorylated more rapidly in the depolarized myocytes. The results support the view that both cyclic AMP and calcium signals cooperatively increase the rates of phosphorylation of TN-I and PLN in the depolarized cardiomyocytes during -adrenergic stimulation. The results raise the additional possibility that the calcium signal may regulate the dephosphorylation of PLN in the depolarized cell. While muscarinic attenuation of -adrenergic action on protein phosphorylation was mediated, in part, by decreased AC activity, and muscarinic inhibition of AC and protein phosphorylation was not detectably influenced by the depolarization, the evidence was seen that muscarinic stimulation of dephosphorylation mechanisms are intimately involved. The postulate that the simultaneous stimulation of 1-adrenoceptors inhibits -adrenergic stimulation of PLN and TN-I phosphorylation is supported.  相似文献   
6.
1. About 4 and 23% of the homogenate adenylate cyclase activity was recovered in the microsomal and sarcolemmal fractions isolated from guinea-pig heart ventricles. 2. Cardiac microsomal adenylate cyclase activity [basal as well as p[NH]ppG (guanyl-5′-yl imidodiphosphate)- and NaF-stimulated] was increased over 2-fold in the presence of Lubrol-PX (0.01–0.1%). 3. The sarcolemmal enzyme, however, showed concentration-dependent inhibition caused by the detergent under all assay conditions, except when p[NH]ppG was included in the assay. In the latter case, the detergent (0.01–0.02%) caused a modest increase (30–45%) in enzyme activity. 4. Another non-ionic detergent, Triton X-100, also stimulated the microsomal cyclase and inhibited the sarcolemmal enzyme. 5. With either membrane fraction, Lubrol-PX solubilized the enzyme when the detergent/membrane protein ratio was 2.5 (μmol of detergent/mg of protein). 6. The findings with homogenate and a washed particulate fraction resembled those obtained with sarcolemma, and those with isolated sarcoplasmic reticulum resembled those with microsomal preparations. 7. p[NH]ppG, and to some extent NaF, protected the detergent-induced inactivation of the enzyme observed at higher detergent concentrations (0.5% Lubrol-PX and 0.05–0.5% Triton X-100). 8. In the absence of detergents, p[NH]ppG increased the basal enzyme activity about 2-fold in microsomal fractions, but did not appreciably stimulate the sarcolemmal enzyme. Isoproterenol, on the other hand, increased the sarcolemmal enzyme activity (>2-fold) in the presence of p[NH]ppG and caused only moderate stimulation (31%) of the microsomal enzyme under these conditions. 9. These findings support the view that, although the bulk of adenylate cyclase resides in heart sarcolemma (plasma membrane), the microsomal activity cannot be accounted for solely by contamination of the microsomal fraction with sarcolemma, as has been suggested by others [Besch, Jones & Watanabe (1976) Circ. Res. 39, 586–595; Engelhard, Plut & Storm (1976) Biochim. Biophys. Acta 451, 48–61]. Further, the results of this study show that cardiac sarcoplasmic-reticulum membranes possess this enzyme.  相似文献   
7.
Calcium ion-stimulated phosphorylation of myelin proteins.   总被引:5,自引:3,他引:2       下载免费PDF全文
Myelin isolated from the central and peripheral nervous system contains a Mg2+-dependent protein kinase that catalyses phosphorylation of myelin-specific proteins. This phosphorylation is markedly stimulated by Ca2+ but not by cyclic AMP. Evidence was obtained that suggested an involvement of calmodulin-like protein in the stimulatory effects of Ca2+ on myelin phosphorylation.  相似文献   
8.
Guanylate cyclase activity was determined in a 1000g particulate fraction derived from rabbit heart homogenates using Mg2+ or Mn2+ as sole cation in the presence and absence of Triton X-100. With Mg2+, very little guanylate cyclase activity could be detected in the original particulate fraction assayed with or without Triton, or in the particulate fraction treated with varying concentrations of Triton (detergent-treated mixture) prior to enzyme assay. However, the detergent-solubilized supernatants as well as the detergent-insoluble residues (pellets) derived from detergent-treated mixtures possessed appreciable Mg2+-supported enzyme activity. With Mn2+, significant enzyme activity was detectable in the original particulate fraction assayed without Triton. Much higher activity was seen in particulate fraction assayed with Triton and in detergent-treated mixtures; the supernatants but not the pellets derived from detergent-treated mixtures possessed even greater activity. The sum of enzyme activity in pellet and supernatant fractions greatly exceeded that of the mixture. When the pellets and supernatants derived from detergenttreated mixtures were recombined, measured enzyme activities were similar to those of the original mixture. With Mg2+ or Mn2+, the specific activity of guanylate cyclase in pellet and supernatant fractions varied considerably depending on the concentration of Triton used for treatment of the particulate fraction; treatment with low concentrations of Triton (0.2–0.7 μmol/mg protein) gave supernatants showing high activity whereas treatment with relatively greater concentrations of the detergent (>0.7 μmol/mg protein) gave pellets showing high activity. The relative distribution of guanylate cyclase in pellet and supernatant fractions expressed as a function of Triton concentration during treatment (of the particulate fraction) showed that 50 to 80% of the recovered enzyme activity remained in supernatants at low detergent concentrations whereas 50 to 80% of the recovered activity resided in the pellets at higher detergent concentrations. Inclusion of excess Triton in the enzyme assay medium did not alter the specific activity profiles and the relative distribution patterns of the cyclase in pellet versus supernatant fractions. The results demonstrate the inherent potential of cardiac particulate guanylate cyclase to utilize Mg2+ in catalyzing the synthesis of cyclic GMP. However, it appears that some factor(s) endogenous to the cardiac particulate fraction severely impairs the expression of Mg2+-dependent activity; Mn2+-dependent activity is also affected by such factor(s) but apparently less severely. Further, the results suggest that previously reported activities of cardiac particulate guanylate cyclase, despite being assayed with Mn2+ and in the presence of Triton X-100, represent underestimation of what otherwise appears to be a highly active enzyme system capable of utilizing physiologically relevant divalent cation such as Mg2+.  相似文献   
9.
Myelin isolated from the rat peripheral nervous system (sciatic nerve and cauda equina) contained Mg2+-dependent protein kinase that phosphorylated myelin polypeptides. Ca2+, in micromolar concentrations, markedly stimulated phosphorylation (half-maximal stimulation at 5 microM (free) Ca2+) but at higher concentrations (greater than 100 microM Ca2+) it caused inhibition. In the presence of Triton X-100, phosphorylation (+/-Ca2+) of myelin was increased and Ca2+ caused up to a 10-fold increase in phosphorylation. Among the myelin polypeptides, P0 (Mr, 28 000), a major glycoprotein, accounted for nearly 60% of the total phosphate incorporated into the myelin and Ca2+ markedly promoted phosphorylation of P0. Phosphorylation of other myelin polypeptides, P2 (Mr, 16 000), Y (Mr, 26 000), and P1 (Mr, 20 000), and the Ca2+-stimulatory effect on phosphorylation of these were also evident. Cyclic AMP (or other cyclic nucleotides) failed to show any significant stimulatory effect on myelin phosphorylation.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号