首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   146篇
  免费   29篇
  2022年   1篇
  2015年   2篇
  2014年   2篇
  2012年   2篇
  2010年   5篇
  2009年   1篇
  2008年   2篇
  2007年   4篇
  2006年   5篇
  2005年   2篇
  2004年   11篇
  2003年   3篇
  2002年   5篇
  2001年   4篇
  2000年   7篇
  1999年   7篇
  1998年   7篇
  1997年   6篇
  1996年   1篇
  1995年   5篇
  1994年   2篇
  1993年   5篇
  1992年   3篇
  1991年   7篇
  1990年   9篇
  1989年   11篇
  1988年   4篇
  1987年   4篇
  1986年   2篇
  1985年   11篇
  1984年   11篇
  1983年   3篇
  1982年   2篇
  1981年   3篇
  1980年   4篇
  1978年   2篇
  1977年   1篇
  1976年   3篇
  1975年   5篇
  1974年   1篇
排序方式: 共有175条查询结果,搜索用时 46 毫秒
1.
From a screening of several Kluyveromyces strains, the yeast Kluyveromyces marxianus CBS 6556 was selected for a study of the parameters relevant to the commercial production of inulinase (EC 3.2.1.7). This yeast exhibited superior properties with respect to growth at elevated temperatures (40 to 45°C), substrate specificity, and inulinase production. In sucrose-limited chemostat cultures growing on mineral medium, the amount of enzyme decreased from 52 U mg of cell dry weight−1 at D = 0.1 h−1 to 2 U mg of cell dry weight−1 at D = 0.8 h−1. Experiments with nitrogen-limited cultures further confirmed that synthesis of the enzyme is negatively controlled by the residual sugar concentration in the culture. High enzyme activities were observed during growth on nonsugar substrates, indicating that synthesis of the enzyme is a result of a derepression/repression mechanism. A substantial part of the inulinase produced by K. marxianus was associated with the cell wall. The enzyme could be released from the cell wall via a simple chemical treatment of cells. Results are presented on the effect of cultivation conditions on the distribution of the enzyme. Inulinase was active with sucrose, raffinose, stachyose, and inulin as substrates and exhibited an S/I ratio (relative activities with sucrose and inulin) of 15 under standard assay conditions. The enzyme activity decreased with increasing chain length of the substrate.  相似文献   
2.
3.
4.
The coupling of membrane-bound glucose dehydrogenase (EC 1.1.99.17) to the respiratory chain has been studied in whole cells, cell-free extracts, and membrane vesicles of gram-negative bacteria. Several Escherichia coli strains synthesized glucose dehydrogenase apoenzyme which could be activated by the prosthetic group pyrrolo-quinoline quinone. The synthesis of the glucose dehydrogenase apoenzyme was independent of the presence of glucose in the growth medium. Membrane vesicles of E. coli, grown on glucose or succinate, oxidized glucose to gluconate in the presence of pyrrolo-quinoline quinone. This oxidation led to the generation of a proton motive force which supplied the driving force for uptake of lactose, alanine, and glutamate. Reconstitution of glucose dehydrogenase with limiting amounts of pyrrolo-quinoline quinone allowed manipulation of the rate of electron transfer in membrane vesicles and whole cells. At saturating levels of pyrrolo-quinoline quinone, glucose was the most effective electron donor in E. coli, and glucose oxidation supported secondary transport at even higher rates than oxidation of reduced phenazine methosulfate. Apoenzyme of pyrrolo-quinoline quinone-dependent glucose dehydrogenases with similar properties as the E. coli enzyme were found in Acinetobacter calcoaceticus (var. lwoffi) grown aerobically on acetate and in Pseudomonas aeruginosa grown anaerobically on glucose and nitrate.  相似文献   
5.
Glucose transport in crabtree-positive and crabtree-negative yeasts   总被引:8,自引:0,他引:8  
The kinetic parameters of glucose transport in four Crabtree-positive and four Crabtree-negative yeasts were determined. The organisms were grown in aerobic glucose-limited chemostats at a dilution rate of 0.1 h-1. The results show a clear correlation between the presence of high-affinity glucose transport systems and the absence of aerobic fermentation upon addition of excess glucose to steady-state cultures. The presence of these H+-symport systems could be established by determination of intracellular accumulation of 6-deoxy-[3H]glucose and alkalinization of buffered cell suspensions upon addition of glucose. In contrast, the yeasts that did show aerobic alcoholic fermentation during these glucose pulse experiments had low-affinity facilitated-diffusion carriers only. In the yeasts examined the capacity of the glucose transport carriers was higher than the actual glucose consumption rates during the glucose pulse experiments. The relationship between the rate of sugar consumption and the rate of alcoholic fermentation was studied in detail with Saccharomyces cerevisiae. When S. cerevisiae was pulsed with low amounts of glucose or mannose, in order to obtain submaximal sugar consumption rates, fermentation was already occurring at sugar consumption rates just above those which were maintained in the glucose-limited steady-state culture. The results are interpreted in relation with the Crabtree effect. In Crabtree-positive yeasts, an increase in the external glucose concentration may lead to unrestricted glucose uptake by facilitated diffusion and hence, to aerobic fermentation. In contrast, Crabtree-negative yeasts may restrict the entry of glucose by their regulated H+-symport systems and thus prevent the occurrence of overflow metabolism.  相似文献   
6.
The production of extracellular inulinase (\-1,2-d-fructan fructanohydrolase, EC 3.2.1.7) was studied in fed-batch cultures of the yeast Kluyveromyces marxianus CBS 6556 at 30 and at 40° C. At both temperatures, the final biomass concentration exceeded 100 g·l–1 and more than 2 g enzyme. L–1 of culture supernatant was produced. The biomass yield on O2 at 40° C was substantially lower than at 30°C. Nevertheless, at 40° C a growth rate of 0.20 h–1 could be maintained for a longer period than at 30° C. The unexpected higher O2-transfer rate at 40°C is probably due to a lower viscosity of the culture broth. The 40°C fermentation took only 33 h as compared to 42 h at 30° C. These results indicate that K. marxianus is a promising host for the extracellular production of heterologous proteins under the control of the inulinase promoter.  相似文献   
7.
An overview is presented of the steady- and transient state kinetics of growth and formation of metabolic byproducts in yeasts.Saccharomyces cerevisiae is strongly inclined to perform alcoholic fermentation. Even under fully aerobic conditions, ethanol is produced by this yeast when sugars are present in excess. This so-called Crabtree effect probably results from a multiplicity of factors, including the mode of sugar transport and the regulation of enzyme activities involved in respiration and alcoholic fermentation. The Crabtree effect inS. cerevisiae is not caused by an intrinsic inability to adjust its respiratory activity to high glycolytic fluxes. Under certain cultivation conditions, for example during growth in the presence of weak organic acids, very high respiration rates can be achieved by this yeast.S. cerevisiae is an exceptional yeast since, in contrast to most other species that are able to perform alcoholic fermentation, it can grow under strictly anaerobic conditions.Non-Saccharomyces yeasts require a growth-limiting supply of oxygen (i.e. oxygen-limited growth conditions) to trigger alcoholic fermentation. However, complete absence of oxygen results in cessation of growth and therefore, ultimately, of alcoholic fermentation. Since it is very difficult to reproducibly achieve the right oxygen dosage in large-scale fermentations, non-Saccharomyces yeasts are therefore not suitable for large-scale alcoholic fermentation of sugar-containing waste streams. In these yeasts, alcoholic fermentation is also dependent on the type of sugar. For example, the facultatively fermentative yeastCandida utilis does not ferment maltose, not even under oxygen-limited growth conditions, although this disaccharide supports rapid oxidative growth.  相似文献   
8.
Type strains of 200 species of yeasts able to ferment glucose and grow on xylose were screened for fermentation of d-xylose. In most of the strains tested, ethanol production was negligible. Nineteen were found to produce between 0.1 and 1.0 g of ethanol per liter. Strains of the following species produce more than 1 g of ethanol per liter in the fermentation test with 2% xylose: Brettanomyces naardenensis, Candida shehatae, Candida tenuis, Pachysolen tannophilus, Pichia segobiensis, and Pichia stipitis. Subsequent screening of these yeasts for their capacity to ferment d-cellobiose revealed that only Candida tenuis CBS 4435 was a good fermenter of both xylose and cellobiose under the test conditions used.  相似文献   
9.
The development of peroxisomes has been studied in cells of the yeast Hansenula polymorpha during growth on methanol in batch and chemostat cultures. During bud formation, new peroxisomes were generated by the separation of small peroxisomes from mature organelles in the mother cells. The number of peroxisomes migrating to the buds was dependent upon environmental conditions. Aging of cells was accompanied by an increase in size of the peroxisomes and a subsequent increase in their numbers per cell. Their ultimate shape and substructure as well as their number per cell was dependent upon the physiological state of the culture. The change in number and volume density of peroxisomes was related to the level of alcohol oxidase in the cells. Development of peroxisomes in cells of batch cultures was accompanied by an increase in size of the crystalline inclusions in the organelles; they had become completely crystalline when the cells were in the stationary phase. Peroxisomes in cells from methanol-limited chemostat cultures were completely crystalline, irrespective of growth rate. Results of biochemical and cytochemical experiments suggested that alcohol oxidase is a major component of the crystalline inclusions in the peroxisomes of methanol-grown Hansenula polymorpha. Possible mechanisms involved in the ultrastructural changes in peroxisomes during their development have been discussed.Abbreviations DAB 3,3-diaminobenzidine - OD optical density (663 nm)  相似文献   
10.
A facultative methylotrophic bacterium was isolated from enrichment cultures containing methylamine as the sole carbon source. It was tentatively identified as an Arthrobacter species. Extracts of cells grown on methylamine or ethylamine contained high levels of amine oxidase (E.C. 1.4.3.) activity. Glucose- or choline-grown cells lacked this enzyme. Oxidation of primary amines by the enzyme resulted in the formation of H2O2; as a consequence high levels of catalase were present in methylamine-and ethylamine-grown cells. The significance of catalase in vivo was demonstrated by addition of 20 mM aminotriazole (a catalase inhibitor) to exponentially growing cells. This completely blocked growth on methylamine whereas growth on glucose was hardly affected. Cytochemical studies showed that methylamine-dependent H2O2 production mainly occurred on invaginations of the cytoplasmic membrane. Assimilation of formaldehyde which is generated during methylamine oxidation was by the FBP variant of the RuMP cycle of formaldehyde fixation. The absence of NAD-dependent formaldehyde and formate dehydrogenases indicated the operation of a non-linear oxidation sequence for formal-dehyde via hexulose phosphate synthase. Enzyme profiles of the organism grown on various substrates suggested that the synthesis of amine oxidase, catalase and the enzymes of the RuMP cycle is not under coordinate control.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号