首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   108篇
  免费   39篇
  2021年   1篇
  2019年   3篇
  2016年   2篇
  2015年   4篇
  2014年   6篇
  2013年   10篇
  2012年   7篇
  2011年   6篇
  2010年   4篇
  2009年   6篇
  2008年   4篇
  2007年   10篇
  2006年   9篇
  2005年   3篇
  2004年   4篇
  2003年   3篇
  2002年   1篇
  2001年   3篇
  2000年   4篇
  1999年   5篇
  1998年   5篇
  1997年   3篇
  1996年   1篇
  1995年   4篇
  1994年   4篇
  1993年   5篇
  1992年   4篇
  1991年   3篇
  1990年   2篇
  1989年   3篇
  1988年   3篇
  1987年   3篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1980年   3篇
  1977年   1篇
  1966年   1篇
排序方式: 共有147条查询结果,搜索用时 31 毫秒
1.
The 44-amino-acid E5 protein of bovine papillomavirus type 1 is the shortest known protein with transforming activity. To identify the specific amino acids required for in vitro focus formation in mouse C127 cells, we used oligonucleotide-directed saturation mutagenesis to construct an extensive collection of mutants with missense mutations in the E5 gene. Characterization of mutants with amino acid substitutions in the hydrophobic middle third of the E5 protein indicated that efficient transformation requires a stretch of hydrophobic amino acids but not a specific amino acid sequence in this portion of the protein. Many amino acids in the carboxyl-terminal third of the protein can also undergo substitution without impairment of focus-forming activity, but the amino acids at seven positions, including two cysteine residues that mediate dimer formation, appear essential for efficient transforming activity. These essential amino acids are the most well conserved among related fibropapillomaviruses. The small size of the E5 protein, its lack of similarity to other transforming proteins, and its ability to tolerate many amino acid substitutions implies that it transforms cells via a novel mechanism.  相似文献   
2.
The great majority of viral mRNAs in mouse C127 cells transformed by bovine papillomavirus type 1 (BPV) have a common 3' end at the early polyadenylation site which is 23 nucleotides (nt) downstream of a canonical poly(A) consensus signal. Twenty percent of BPV mRNA from productively infected cells bypasses the early polyadenylation site and uses the late polyadenylation site approximately 3,000 nt downstream. To inactivate the BPV early polyadenylation site, the early poly(A) consensus signal was mutated from AAUAAA to UGUAAA. Surprisingly, this mutation did not result in significant read-through expression of downstream RNA. Rather, RNA mapping and cDNA cloning experiments demonstrate that virtually all of the mutant RNA is cleaved and polyadenylated at heterogeneous sites approximately 100 nt upstream of the wild-type early polyadenylation site. In addition, cells transformed by wild-type BPV harbor a small population of mRNAs with 3' ends located in this upstream region. These experiments demonstrate that inactivation of the major poly(A) signal induces preferential use of otherwise very minor upstream poly(A) sites. Mutational analysis suggests that polyadenylation at the minor sites is controlled, at least in part, by UAUAUA, an unusual variant of the poly(A) consensus signal approximately 25 nt upstream of the minor polyadenylation sites. These experiments indicate that inactivation of the major early polyadenylation signal is not sufficient to induce expression of the BPV late genes in transformed mouse cells.  相似文献   
3.
Total Ca content and that fraction of Ca sensitive to removal by the chelator ethylene glycol-bis(β-aminoethyl ether)N,N,N',N'-tetraacetate (EGTA) have been investigated in the mouse 3T3 cell as a function of growth stage, transformation with SV40 virus, and serum levels of the media. Cells were allowed to grow through several doublings in media containing (45)Ca. The cellular content of (45)Ca was used to access total cell Ca. That fraction of (45)Ca removed by EGTA was presumed to represent primarily surface-localized Ca. The data are expressed on a per cell volume basis to compensate for size differences as a function of growth stage and transformation. During exponential growth phase, the 3T3 cell contains 525pmol Ca/μl cell volume. Of this, approx. 457 pmol/μl is not removable by EGTA and, presumably, is cytoplasmically located. This value is in close agreement with previous studies on the HeLa cell (470 pmol Ca/μl cell water after the removal of the surface Ca). The low level of EGTA- removable Ca present in the 3T3 cell during early exponential growth (68 pmol Ca/μl cell volume) increases progressively with increasing cell density, and upon quiescence it is sevenfold greater. In contrast, SV40- transformed 3T3 cells growing exponentially possess total levels of Ca which are approximately two-thirds the levels of the normal 3T3 cell. However, their EGTA-sensitive Ca is not significantly different from that of exponentially growing, normal 3T3 cells. As the transformed cells continue to grow at high density, their total ca and their sensitivity to EGTA do not change, in contrast to the normal 3T3 cell. Thus, an increase in Ca associated with the cell surface appears to be correlated with growth inhibition. This has been investigated further by regulating growth of the normal and transformed cell with alterations in the serum level of the media. In 4 percent calf serum the normal cell is stopped from continued proliferation. Growth stoppage under these conditions is characterized by a nearly fourfold increase in EGTA-removable Ca, similar to the increase observed upon quiescence in depleted 10 percent serum. Similar treatment of the transformed cell does not reduce its growth rate, nor does it significantly alter Ca distribution. However, at 0.5 percent medium serum levels, the SV40 3T3 growth rate is substantially reduced and, under these conditions, EGTA-removable Ca increases twofold.  相似文献   
4.
The T3SS injectisome is a syringe-shaped macromolecular assembly found in pathogenic Gram-negative bacteria that allows for the direct delivery of virulence effectors into host cells. It is composed of a “basal body”, a lock-nut structure spanning both bacterial membranes, and a “needle” that protrudes away from the bacterial surface. A hollow channel spans throughout the apparatus, permitting the translocation of effector proteins from the bacterial cytosol to the host plasma membrane. The basal body is composed largely of three membrane-embedded proteins that form oligomerized concentric rings. Here, we report the crystal structures of three domains of the prototypical Salmonella SPI-1 basal body, and use a new approach incorporating symmetric flexible backbone docking and EM data to produce a model for their oligomeric assembly. The obtained models, validated by biochemical and in vivo assays, reveal the molecular details of the interactions driving basal body assembly, and notably demonstrate a conserved oligomerization mechanism.  相似文献   
5.
An increasing number of cryo‐electron microscopy (cryo‐EM) density maps are being generated with suitable resolution to trace the protein backbone and guide sidechain placement. Generating and evaluating atomic models based on such maps would be greatly facilitated by independent validation metrics for assessing the fit of the models to the data. We describe such a metric based on the fit of atomic models with independent test maps from single particle reconstructions not used in model refinement. The metric provides a means to determine the proper balance between the fit to the density and model energy and stereochemistry during refinement, and is likely to be useful in determining values of model building and refinement metaparameters quite generally.  相似文献   
6.

Background  

Leber's congenital amaurosis (LCA) is a severe form of retinal dystrophy. Mutations in the RPE65 gene, which is abundantly expressed in retinal pigment epithelial (RPE) cells, account for approximately 10–15% of LCA cases. In this study we used the high turnover, and rapid breeding and maturation time of the Rpe65 -/- knockout mice to assess the efficacy of using rAAV-mediated gene therapy to replace the disrupted RPE65 gene. The potential for rAAV-mediated gene treatment of LCA was then analyzed by determining the pattern of RPE65 expression, the physiological and histological effects that it produced, and any improvement in visual function.  相似文献   
7.
A variety of tumors contain activating mutations in the cytoplasmic juxtamembrane domain of the type III family of receptor-tyrosine kinases, and some constructed mutations in this domain induce ligand-independent receptor activation. To explore the role of this domain in regulation of receptor activity, we subjected the juxtamembrane domain of the murine platelet-derived growth factor (PDGF) beta receptor to alanine-scanning mutagenesis. The mutant receptors were expressed in Ba/F3 cells and tested for constitutive tyrosine phosphorylation, association with phosphatidylinositol 3'-kinase, and their ability to induce cell survival and proliferation in the absence of interleukin-3. The mutant receptors accumulated to similar levels and appeared to undergo a normal PDGF-induced increase in tyrosine phosphorylation. Alanine substitutions at numerous positions located throughout the juxtamembrane domain caused constitutive receptor activation, as did an alanine insertion in the membrane-proximal segment of the juxtamembrane domain and a six-amino acid deletion in the center of the domain. It is possible to model the PDGF receptor juxtamembrane domain as a short alpha-helix followed by a three-stranded beta-sheet very similar to the known structures of WW domains. Strikingly, the activating mutations clustered in the central portions of the first and second beta strands and along one face of the beta-sheet, whereas the loops connecting the strands were largely devoid of mutationally sensitive positions. These findings provide strong support for the model that the activating mutations in the juxtamembrane region stimulate receptor activity by disrupting an inhibitory WW-like domain.  相似文献   
8.
9.
Horner SM  DiMaio D 《Journal of virology》2007,81(12):6254-6264
Viral DNA binding proteins that direct nucleases or other protein domains to viral DNA in lytically or latently infected cells may provide a novel approach to modulate viral gene expression or replication. Cervical carcinogenesis is initiated by high-risk human papillomavirus (HPV) infection, and viral DNA persists in the cancer cells. To test whether a DNA binding domain of a papillomavirus protein can direct a nuclease domain to cleave HPV DNA in cervical cancer cells, we fused the DNA binding domain of the bovine papillomavirus type 1 (BPV1) E2 protein to the catalytic domain of the FokI restriction endonuclease, generating a BPV1 E2-FokI chimeric nuclease (BEF). BEF introduced DNA double-strand breaks on both sides of an E2 binding site in vitro, whereas DNA binding or catalytic mutants of BEF did not. After expression of BEF in HeLa cervical carcinoma cells, we detected cleavage at E2 binding sites in the integrated HPV18 DNA in these cells and also at an E2 binding site in cellular DNA. BEF-expressing cells underwent senescence, which required the DNA binding activity of BEF, but not its nuclease activity. These results demonstrate that DNA binding domains of viral proteins can target effector molecules to cognate binding sites in virally infected cells.  相似文献   
10.
It has been known for more than 150 years that the risk of carcinoma of the uterine cervix correlates with the number of sexual partners. Laboratory and epidemiological evidence demonstrated that infection with certain human papillomavirus (HPV) types initiates the vast majority of, if not all, cervical cancer, as well as a substantial fraction of other cancers, including other anogenital cancer and oropharyngeal cancer. Pap smear testing resulted in a dramatic reduction in the incidence of cervical cancer in the developed world, and HPV vaccination has the potential to eradicate HPV-associated cancer worldwide and represents a major public health breakthrough. The major current challenge is to ensure that HPV vaccines are widely administered.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号