首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   107篇
  免费   16篇
  2022年   1篇
  2021年   1篇
  2019年   1篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2014年   2篇
  2013年   7篇
  2011年   2篇
  2010年   6篇
  2009年   3篇
  2008年   2篇
  2007年   8篇
  2006年   14篇
  2005年   11篇
  2004年   16篇
  2003年   6篇
  2002年   4篇
  2001年   3篇
  2000年   2篇
  1999年   4篇
  1998年   2篇
  1997年   2篇
  1996年   3篇
  1995年   3篇
  1994年   2篇
  1993年   1篇
  1992年   3篇
  1991年   3篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1985年   1篇
  1984年   1篇
  1977年   1篇
  1975年   1篇
排序方式: 共有123条查询结果,搜索用时 156 毫秒
1.
Herpes simplex virus type 1 polypeptide ICP4 bends DNA.   总被引:5,自引:1,他引:4       下载免费PDF全文
  相似文献   
2.
3.
Ataxia with vitamin E deficiency (AVED) is an autosomal recessive disease characterized clinically by neurological symptoms with often striking resemblance to those of Friedreich ataxia. This disorder has been reported previously as familial isolated vitamin E deficiency. We have mapped recently the AVED locus to a 5-cM confidence interval on chromosome 8q by homozygosity mapping in six Mediterranean families. We have now analyzed six new and two previously described families and demonstrate genetic homogeneity despite important clinical variability and wide geographic origins. Analysis of nine new tightly linked microsatellite markers, including four characterized in this study, revealed a predominant but not unique mutation in northern African populations, where this condition is more frequent. Haplotype analysis but also classical recombinations allowed us to refine the AVED position to a 1-cM interval. A YAC contig over this interval was constructed from marker STSs and YAC fingerprint data, in order to facilitate the search of the AVED gene.  相似文献   
4.
Interleukin-1 (IL-1) receptor-associated kinase (IRAK) is phosphorylated after it is recruited to the receptor, subsequently ubiquitinated, and eventually degraded upon IL-1 stimulation. Although a point mutation changing lysine 134 to arginine (K134R) in IRAK abolished IL-1-induced IRAK ubiquitination and degradation, mutations of serines and threonines adjacent to lysine 134 to alanines ((S/T)A (131-144)) reduced IL-1-induced IRAK phosphorylation and abolished IRAK ubiquitination. Through the study of these IRAK modification mutants, we uncovered two parallel IL-1-mediated signaling pathways for NFkappaB activation, TAK1-dependent and MEKK3-dependent, respectively. These two pathways bifurcate at the level of IRAK modification. The TAK1-dependent pathway leads to IKKalpha/beta phosphorylation and IKKbeta activation, resulting in classical NFkappaB activation through IkappaBalpha phosphorylation and degradation. The TAK1-independent MEKK3-dependent pathway involves IKKgamma phosphorylation and IKKalpha activation, resulting in NFkappaB activation through IkappaBalpha phosphorylation and subsequent dissociation from NFkappaB but without IkappaBalpha degradation. These results provide significant insight to our further understanding of NFkappaB activation pathways.  相似文献   
5.
We previously showed that inositol hexakisphosphate kinase 2 (IHPK2) functions as a growth-suppressive and apoptosis-enhancing kinase during cell stress. Overexpression of IHPK2 sensitized ovarian carcinoma cell lines to the growth-suppressive and apoptotic effects of interferon beta (IFN-beta), IFN-alpha2, and gamma-irradiation. Expression of a kinase-dead mutant abrogated 50% of the apoptosis induced by IFN-beta. Because the kinase-dead mutant retained significant response to cell stressors, we hypothesized that a portion of the death-promoting function of IHPK2 was independent of its kinase activity. We now demonstrate that IHPK2 binds to tumor necrosis factor (TNF) receptor-associated factor (TRAF) 2 and interferes with phosphorylation of transforming growth factor beta-activated kinase 1 (TAK1), thereby inhibiting NF-kappaB signaling. IHPK2 contains two sites required for TRAF2 binding, Ser-347 and Ser-359. Compared with wild type IHPK2-transfected cells, cells expressing S347A and S359A mutations displayed 3.5-fold greater TAK1 activation following TNF-alpha. This mutant demonstrated a 6-10-fold increase in NF-kappaB DNA binding following TNF-alpha compared with wild type IHPK2-expressing cells in which NF-kappaB DNA binding was inhibited. Cells transfected with wild type IHPK2 or IHPK2 mutants that lacked S347A and S359A mutations displayed enhanced terminal deoxynucleotidyltransferase-mediated dUTP nick end-labeling staining following TNF-alpha. We believe that IHPK2-TRAF2 binding leads to attenuation of TAK1- and NF-kappaB-mediated signaling and is partially responsible for the apoptotic activity of IHPK2.  相似文献   
6.
7.
8.
9.
Lateral root formation, the primary way plants increase their root mass, displays developmental plasticity in response to environmental changes. The aberrant lateral root formation (alf)4-1 mutation blocks the initiation of lateral roots, thus greatly altering root system architecture. We have positionally cloned the ALF4 gene and have further characterized its phenotype. The encoded ALF4 protein is conserved among plants and has no similarities to proteins from other kingdoms. The gene is present in a single copy in Arabidopsis. Using translational reporters for ALF4 gene expression, we have determined that the ALF4 protein is nuclear localized and that the gene is expressed in most plant tissues; however, ALF4 expression and ALF4's subcellular location are not regulated by auxin. These findings taken together with further genetic and phenotypic characterization of the alf4-1 mutant suggest that ALF4 functions independent from auxin signaling and instead functions in maintaining the pericycle in the mitotically competent state needed for lateral root formation. Our results provide genetic evidence that the pericycle shares properties with meristems and that this tissue plays a central role in creating the developmental plasticity needed for root system development.  相似文献   
10.
Many point mutations in human Cu,Zn superoxide dismutase (SOD) cause familial amyotrophic lateral sclerosis (FALS), a fatal neurodegenerative disorder in heterozygotes. Here we show that these mutations cluster in protein regions influencing architectural integrity. Furthermore, crystal structures of SOD wild-type and FALS mutant H43R proteins uncover resulting local framework defects. Characterizations of beta-barrel (H43R) and dimer interface (A4V) FALS mutants reveal reduced stability and drastically increased aggregation propensity. Moreover, electron and atomic force microscopy indicate that these defects promote the formation of filamentous aggregates. The filaments resemble those seen in neurons of FALS patients and bind both Congo red and thioflavin T, suggesting the presence of amyloid-like, stacked beta-sheet interactions. These results support free-cysteine-independent aggregation of FALS mutant SOD as an integral part of FALS pathology. They furthermore provide a molecular basis for the single FALS disease phenotype resulting from mutations of diverse side-chains throughout the protein: many FALS mutations reduce structural integrity, lowering the energy barrier for fibrous aggregation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号