首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20819篇
  免费   1644篇
  国内免费   1342篇
  2023年   189篇
  2022年   412篇
  2021年   785篇
  2020年   613篇
  2019年   717篇
  2018年   690篇
  2017年   544篇
  2016年   766篇
  2015年   1135篇
  2014年   1300篇
  2013年   1528篇
  2012年   1731篇
  2011年   1547篇
  2010年   985篇
  2009年   845篇
  2008年   1098篇
  2007年   1019篇
  2006年   891篇
  2005年   766篇
  2004年   717篇
  2003年   690篇
  2002年   573篇
  2001年   468篇
  2000年   450篇
  1999年   403篇
  1998年   198篇
  1997年   151篇
  1996年   124篇
  1995年   117篇
  1994年   149篇
  1993年   99篇
  1992年   197篇
  1991年   189篇
  1990年   162篇
  1989年   175篇
  1988年   132篇
  1987年   120篇
  1986年   117篇
  1985年   110篇
  1984年   70篇
  1983年   78篇
  1982年   48篇
  1979年   52篇
  1977年   75篇
  1976年   47篇
  1975年   43篇
  1974年   56篇
  1973年   41篇
  1971年   40篇
  1969年   40篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
The preservation of purine ring as purine bases appears to be a common feature of camel liver. Hepatic guanine appears to be actively converted into GMP in the camel rather than further degraded. The limiting step of guanine degradation appears to be the lack of hepatic guanase activity. Higher purine bases over uric acid ratios were found in camel urine with respect to those of zebu.  相似文献   
2.
3.
We have made a preliminary analysis of the results about the effects on tumoral cell line (lymphoid T cell line Jurkat) induced by UVB radiation (dose of 310 mJ/cm2) with and without a vegetable mixture. In the present study, we have used two techniques: Fourier transform infrared spectroscopy (FTIR) and flow cytometry. FTIR spectroscopy has the potential to provide the identification of the vibrational modes of some of the major compounds (lipid, proteins and nucleic acids) without being invasive in the biomaterials. The second technique has allowed us to perform measurements of cytotoxicity and to assess the percentage of apoptosis. We already studied the induction of apoptotic process in the same cell line by UVB radiation; in particular, we looked for correspondences and correlations between FTIR spetroscopy and flow cytometry data finding three highly probable spectroscopic markers of apoptosis (Pozzi et al. in Radiat Res 168:698–705, 2007). In the present work, the results have shown significant changes in the absorbance and spectral pattern in the wavenumber protein and nucleic acids regions after the treatments.  相似文献   
4.
The human blood-brain barrier glucose transport protein (GLUT1) forms homodimers and homotetramers in detergent micelles and in cell membranes, where the GLUT1 oligomeric state determines GLUT1 transport behavior. GLUT1 and the neuronal glucose transporter GLUT3 do not form heterocomplexes in human embryonic kidney 293 (HEK293) cells as judged by co-immunoprecipitation assays. Using homology-scanning mutagenesis in which GLUT1 domains are substituted with equivalent GLUT3 domains and vice versa, we show that GLUT1 transmembrane helix 9 (TM9) is necessary for optimal association of GLUT1-GLUT3 chimeras with parental GLUT1 in HEK cells. GLUT1 TMs 2, 5, 8, and 11 also contribute to a less abundant heterocomplex. Cell surface GLUT1 and GLUT3 containing GLUT1 TM9 are 4-fold more catalytically active than GLUT3 and GLUT1 containing GLUT3 TM9. GLUT1 and GLUT3 display allosteric transport behavior. Size exclusion chromatography of detergent solubilized, purified GLUT1 resolves GLUT1/lipid/detergent micelles as 6- and 10-nm Stokes radius particles, which correspond to GLUT1 dimers and tetramers, respectively. Studies with GLUTs expressed in and solubilized from HEK cells show that HEK cell GLUT1 resolves as 6- and 10-nm Stokes radius particles, whereas GLUT3 resolves as a 6-nm particle. Substitution of GLUT3 TM9 with GLUT1 TM9 causes chimeric GLUT3 to resolve as 6- and 10-nm Stokes radius particles. Substitution of GLUT1 TM9 with GLUT3 TM9 causes chimeric GLUT1 to resolve as a mixture of 6- and 4-nm particles. We discuss these findings in the context of determinants of GLUT oligomeric structure and transport function.  相似文献   
5.
Summary Satellite associations were used as parameters to test nucleolar organizer activity. Assuming that toxic and/or mutagenic agents may affect the ribosomal genes, satellite associations in human lymphocytes were analysed following exposure to X-rays and compared with the satellite association pattern of subjects exposed to TCDD. A significant decrease in the satellite association frequency in D group chromosomes was found both in irradiated lymphocytes and in subjects exposed to Dioxin. The findings seem to be in accordance with the hypothesis based on random damage of functional nucleolar organizing regions.  相似文献   
6.
7.
8.
A Di Cerbo  D Corda 《Biochimie》1999,81(5):415-424
The elucidation of the multiple signaling cascades coupled to the TSH receptor has offered new approaches in the understanding of the pathogenesis of Graves' disease. Here we review findings showing that immunoglobulins from Graves' patients are heterogeneous, bind to different epitopes and, similarly to TSH, activate different signaling pathways, including adenylyl cyclase, phospholipase C and phospholipase A2. Evidence that the multiplicity of signals correlates with the different manifestations of the disease is also summarized. We believe that the dissection of the molecular mechanisms involved in the pathogenesis of Graves' disease offers the basis for developing novel therapeutical approaches to this disease.  相似文献   
9.
10.
COVID-19, caused by SARS-CoV-2, is an acute and rapidly developing pandemic, which leads to a global health crisis. SARS-CoV-2 primarily attacks human alveoli and causes severe lung infection and damage. To better understand the molecular basis of this disease, we sought to characterize the responses of alveolar epithelium and its adjacent microvascular endothelium to viral infection under a co-culture system. SARS-CoV-2 infection caused massive virus replication and dramatic organelles remodeling in alveolar epithelial cells, alone. While, viral infection affected endothelial cells in an indirect manner, which was mediated by infected alveolar epithelium. Proteomics analysis and TEM examinations showed viral infection caused global proteomic modulations and marked ultrastructural changes in both epithelial cells and endothelial cells under the co-culture system. In particular, viral infection elicited global protein changes and structural reorganizations across many sub-cellular compartments in epithelial cells. Among the affected organelles, mitochondrion seems to be a primary target organelle. Besides, according to EM and proteomic results, we identified Daurisoline, a potent autophagy inhibitor, could inhibit virus replication effectively in host cells. Collectively, our study revealed an unrecognized cross-talk between epithelium and endothelium, which contributed to alveolar–capillary injury during SARS-CoV-2 infection. These new findings will expand our understanding of COVID-19 and may also be helpful for targeted drug development.Subject terms: Mechanisms of disease, Viral infection  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号