首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   5篇
  2015年   2篇
  2014年   1篇
  2013年   1篇
  2011年   2篇
  2007年   3篇
  2006年   1篇
  2005年   1篇
  2001年   1篇
  2000年   3篇
  1999年   3篇
  1998年   2篇
  1996年   1篇
排序方式: 共有21条查询结果,搜索用时 15 毫秒
1.
We report a novel signaling pathway linking M2 muscarinic receptors to metabotropic ion channels. Stimulation of heterologously expressed M2 receptors, but not other Gi/Go-associated receptors (M4 or alpha2c), activates a calcium- and voltage-independent chloride current in Xenopus oocytes. We show that the stimulatory pathway linking M2 receptors to these chloride channels consists of Gbeta gamma stimulation of phosphoinositide 3-kinase gamma (PI-3Kgamma), formation of phosphatidylinositol 3,4,5-trisphosphate (PIP3), and activation of atypical protein kinase C (PKC). The chloride current is activated in the absence of M2 receptor stimulation by the injection of PIP3, and PIP3 current activation is blocked by a pseudosubstrate inhibitory peptide of atypical PKC but not other PKCs. Moreover, the current is activated by injection of recombinant PKCzeta at concentrations as low as 1 nM. M2 receptor-current coupling was disrupted by inhibiton of PI-3K and by injection of beta gamma binding peptides, but it was not affected by expression of dominant negative p85 cRNA. We also show that this pathway mediates M2 receptor coupling to metabotropic nonselective cation channels in mammalian smooth muscle cells, thus demonstrating the broad relevance of this signaling cascade in neurotransmitter signaling.  相似文献   
2.
3.
Adults of the human parasitic trematode Schistosoma mansoni, which causes hepatosplenic/intestinal complications in humans, synthesize glycoconjugates containing the Lewis x (Lex) Galbeta1-->4(Fucalpha1-- >3)GlcNAcbeta1-->R, but not sialyl Lewis x (sLex), antigen. We now report on our analyses of Lexand sLexexpression in S.haematobium and S.japonicum, which are two other major species of human schistosomes that cause disease, and the possible autoimmunity to these antigens in infected individuals. Antigen expression was evaluated by both ELISA and Western blot analyses of detergent extracts of parasites using monoclonal antibodies. Several high molecular weight glycoproteins in both S. haematobium and S. japonicum contain the Lexantigen, but no sialyl Lexantigen was detected. In addition, sera from humans and rodents infected with S.haematobium and S.japonicum contain antibodies reactive with Lex. These results led us to investigate whether Lexantigens are expressed in other helminths, including the parasitic trematode Fasciola hepatica , the parasitic nematode Dirofilaria immitis (dog heartworm), the ruminant nematode Haemonchus contortus , and the free-living nematode Caenorhabditis elegans . Neither Lexnor sialyl-Lexis detectable in these other helminths. Furthermore, none of the helminths, including schistosomes, express Lea, Leb, Ley, or the H- type 1 antigen. However, several glycoproteins from all helminths analyzed are bound by Lotus tetragonolobus agglutinin , which binds Fucalpha1-->3GlcNAc, and Wisteria floribunda agglutinin, which binds GalNAcbeta1-->4GlcNAc (lacdiNAc or LDN). Thus, schistosomes may be unique among helminths in expressing the Lexantigen, whereas many different helminths may express alpha1,3-fucosylated glycans and the LDN motif.   相似文献   
4.
Downstream Regulatory Element Antagonist Modulator (DREAM) belongs to the family of neuronal calcium sensors (NCS) that transduce the intracellular changes in Ca2+ concentration into a variety of responses including gene expression, regulation of Kv channel activity, and calcium homeostasis. Despite the significant sequence and structural similarities with other NCS members, DREAM shows several features unique among NCS such as formation of a tetramer in the apo-state, and interactions with various intracellular biomacromolecules including DNA, presenilin, Kv channels, and calmodulin. Here we use spectroscopic techniques in combination with molecular dynamics simulation to study conformational changes induced by Ca2+/Mg2+ association to DREAM. Our data indicate a minor impact of Ca2+ association on the overall structure of the N- and C-terminal domains, although Ca2+ binding decreases the conformational heterogeneity as evident from the decrease in the fluorescence lifetime distribution in the Ca2+ bound forms of the protein. Time-resolved fluorescence data indicate that Ca2+binding triggers a conformational transition that is characterized by more efficient quenching of Trp residue. The unfolding of DREAM occurs through an partially unfolded intermediate that is stabilized by Ca2+ association to EF-hand 3 and EF-hand 4. The native state is stabilized with respect to the partially unfolded state only in the presence of both Ca2+ and Mg2+ suggesting that, under physiological conditions, Ca2+ free DREAM exhibits a high conformational flexibility that may facilitate its physiological functions.  相似文献   
5.
De novo DNA methylation in Arabidopsis thaliana is catalyzed by the methyltransferase DRM2, a homolog of the mammalian de novo methyltransferase DNMT3. DRM2 is targeted to DNA by small interfering RNAs (siRNAs) in a process known as RNA-directed DNA Methylation (RdDM). While several components of the RdDM pathway are known, a functional understanding of the underlying mechanism is far from complete. We employed both forward and reverse genetic approaches to identify factors involved in de novo methylation. We utilized the FWA transgene, which is methylated and silenced when transformed into wild-type plants, but unmethylated and expressed when transformed into de novo methylation mutants. Expression of FWA is marked by a late-flowering phenotype, which is easily scored in mutant versus wild-type plants. By reverse genetics we discovered the requirement for known RdDM effectors AGO6 and NRPE5a for efficient de novo methylation. A forward genetic approach uncovered alleles of several components of the RdDM pathway, including alleles of clsy1, ktf1 and nrpd/e2, which have not been previously shown to be required for the initial establishment of DNA methylation. Mutations were mapped and genes cloned by both traditional and whole genome sequencing approaches. The methodologies and the mutant alleles discovered will be instrumental in further studies of de novo DNA methylation.Key words: DNA methylation, Arabidopsis, de novo, genetic screen, whole-genome sequencing  相似文献   
6.
Sex hormone status has emerged as an important modulator of coronary physiology and cardiovascular disease risk in both males and females. Our previous studies have demonstrated that testosterone increases protein kinase C (PKC) expression and activity in coronary smooth muscle (CSMC). Because PKC has been implicated in regulation of proliferation and apoptosis in other cell types, we sought to determine if testosterone modulates CSMC proliferation and/or apoptosis through PKC. Porcine CSMC cultures (passages 2–6) from castrated males were treated with testosterone for 24 h. Testosterone (20 and 100 nM) decreased [3H]thymidine incorporation in proliferating CSMC to 59 ± 5.3 and 33.1 ± 4.5% of control. Flow cytometric analysis demonstrated that testosterone induced G1 arrest in CSMC with a concomitant reduction in the S phase cells. Testosterone reduced protein levels of cyclins D1 and E and phosphorylation of retinoblastoma protein while elevating levels of p21cip1 and p27kip1. There were no significant differences in the levels of cyclins D3, CDK2, CDK4, or CDK6. Testosterone significantly reduced kinase activity of CDK2 and -6, but not CDK4, -7, or -1. PKC small interfering RNA (siRNA) prevented testosterone-mediated G1 arrest, p21cip1 upregulation, and cyclin D1 and E downregulation. Furthermore, testosterone increased CSMC apoptosis in a dose-dependent manner, which was blocked by either PKC siRNA or caspase 3 inhibition. These findings demonstrate that the anti-proliferative, pro-apoptotic effects of testosterone on CSMCs are substantially mediated by PKC. androgens; coronary; smooth muscle; cell cycle  相似文献   
7.
Pompe disease is an inherited lysosomal storage disorder that results from a deficiency in acid α-glucosidase (GAA) activity due to mutations in the GAA gene. Pompe disease is characterized by accumulation of lysosomal glycogen primarily in heart and skeletal muscles, which leads to progressive muscle weakness. We have shown previously that the small molecule pharmacological chaperone AT2220 (1-deoxynojirimycin hydrochloride, duvoglustat hydrochloride) binds and stabilizes wild-type as well as multiple mutant forms of GAA, and can lead to higher cellular levels of GAA. In this study, we examined the effect of AT2220 on mutant GAA, in vitro and in vivo, with a primary focus on the endoplasmic reticulum (ER)-retained P545L mutant form of human GAA (P545L GAA). AT2220 increased the specific activity of P545L GAA toward both natural (glycogen) and artificial substrates in vitro. Incubation with AT2220 also increased the ER export, lysosomal delivery, proteolytic processing, and stability of P545L GAA. In a new transgenic mouse model of Pompe disease that expresses human P545L on a Gaa knockout background (Tg/KO) and is characterized by reduced GAA activity and elevated glycogen levels in disease-relevant tissues, daily oral administration of AT2220 for 4 weeks resulted in significant and dose-dependent increases in mature lysosomal GAA isoforms and GAA activity in heart and skeletal muscles. Importantly, oral administration of AT2220 also resulted in significant glycogen reduction in disease-relevant tissues. Compared to daily administration, less-frequent AT2220 administration, including repeated cycles of 4 or 5 days with AT2220 followed by 3 or 2 days without drug, respectively, resulted in even greater glycogen reductions. Collectively, these data indicate that AT2220 increases the specific activity, trafficking, and lysosomal stability of P545L GAA, leads to increased levels of mature GAA in lysosomes, and promotes glycogen reduction in situ. As such, AT2220 may warrant further evaluation as a treatment for Pompe disease.  相似文献   
8.
Prevailing models place spectrin downstream of ankyrin in a pathway of assembly and function in polarized cells. We used a transgene rescue strategy in Drosophila melanogaster to test contributions of four specific functional sites in beta spectrin to its assembly and function. (1) Removal of the pleckstrin homology domain blocked polarized spectrin assembly in midgut epithelial cells and was usually lethal. (2) A point mutation in the tetramer formation site, modeled after a hereditary elliptocytosis mutation in human erythrocyte spectrin, had no detectable effect on function. (3) Replacement of repetitive segments 4-11 of beta spectrin with repeats 2-9 of alpha spectrin abolished function but did not prevent polarized assembly. (4) Removal of the putative ankyrin-binding site had an unexpectedly mild phenotype with no detectable effect on spectrin targeting to the plasma membrane. The results suggest an alternate pathway in which spectrin directs ankyrin assembly and in which some important functions of spectrin are independent of ankyrin.  相似文献   
9.

Background

Urinary tract infection (UTI) is a common infection that poses a substantial healthcare burden, yet its definitive diagnosis can be challenging. There is a need for a rapid, sensitive and reliable analytical method that could allow early detection of UTI and reduce unnecessary antibiotics. Pathogen identification along with quantitative detection of lactoferrin, a measure of pyuria, may provide useful information towards the overall diagnosis of UTI. Here, we report an integrated biosensor platform capable of simultaneous pathogen identification and detection of urinary biomarker that could aid the effectiveness of the treatment and clinical management.

Methodology/Principal Findings

The integrated pathogen 16S rRNA and host lactoferrin detection using the biosensor array was performed on 113 clinical urine samples collected from patients at risk for complicated UTI. For pathogen detection, the biosensor used sandwich hybridization of capture and detector oligonucleotides to the target analyte, bacterial 16S rRNA. For detection of the protein biomarker, the biosensor used an analogous electrochemical sandwich assay based on capture and detector antibodies. For this assay, a set of oligonucleotide probes optimized for hybridization at 37°C to facilitate integration with the immunoassay was developed. This probe set targeted common uropathogens including E. coli, P. mirabilis, P. aeruginosa and Enterococcus spp. as well as less common uropathogens including Serratia, Providencia, Morganella and Staphylococcus spp. The biosensor assay for pathogen detection had a specificity of 97% and a sensitivity of 89%. A significant correlation was found between LTF concentration measured by the biosensor and WBC and leukocyte esterase (p<0.001 for both).

Conclusion/Significance

We successfully demonstrate simultaneous detection of nucleic acid and host immune marker on a single biosensor array in clinical samples. This platform can be used for multiplexed detection of nucleic acid and protein as the next generation of urinary tract infection diagnostics.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号