首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41篇
  免费   2篇
  2023年   1篇
  2021年   4篇
  2018年   3篇
  2016年   2篇
  2015年   5篇
  2014年   3篇
  2013年   7篇
  2012年   7篇
  2011年   3篇
  2010年   2篇
  2009年   1篇
  2008年   2篇
  1978年   1篇
  1971年   1篇
  1970年   1篇
排序方式: 共有43条查询结果,搜索用时 15 毫秒
1.
Actin is a key cytoskeletal protein with multiple roles in cellular processes such as polarized growth, cytokinesis, endocytosis, and cell migration. Actin is present in all eukaryotes as highly dynamic filamentous structures, such as linear cables and branched filaments. Detailed investigation of the molecular role of actin in various processes has been hampered due to the multifunctionality of the protein and the lack of alleles defective in specific processes. The actin cytoskeleton of the fission yeast, Schizosaccharomyces pombe, has been extensively characterized and contains structures analogous to those in other cell types. In this study, primarily with the view to uncover actin function in cytokinesis, we generated a large bank of fission yeast actin mutants that affect the organization of distinct actin structures and/or discrete physiological functions of actin. Our screen identified 17 mutants with specific defects in cytokinesis. Some of these cytokinesis mutants helped in dissecting the function of specific actin structures during ring assembly. Further genetic analysis of some of these actin mutants revealed multiple genetic interactions with mutants previously known to affect the actomyosin ring assembly. We also characterize a mutant allele of actin that is suppressed upon overexpression of Cdc8p-tropomyosin, underscoring the utility of this mutant bank. Another 22 mutant alleles, defective in polarized growth and/or other functions of actin obtained from this screen, are also described in this article. This mutant bank should be a valuable resource to study the physiological and biochemical functions of actin.  相似文献   
2.
High-grade gliomas, such as glioblastomas (GBMs), are very aggressive, invasive brain tumors with low patient survival rates. The recent identification of distinct glioma tumor subtypes offers the potential for understanding disease pathogenesis, responses to treatment and identification of molecular targets for personalized cancer therapies. However, the key alterations that drive tumorigenesis within each subtype are still poorly understood. Although aberrant NF-κB activity has been implicated in glioma, the roles of specific members of this protein family in tumorigenesis and pathogenesis have not been elucidated. In this study, we show that the NF-κB protein RelB is expressed in a particularly aggressive mesenchymal subtype of glioma, and loss of RelB significantly attenuated glioma cell survival, motility and invasion. We find that RelB promotes the expression of mesenchymal genes including YKL-40, a marker of the MES glioma subtype. Additionally, RelB regulates expression of Olig2, a regulator of cancer stem cell proliferation and a candidate marker for the cell of origin in glioma. Furthermore, loss of RelB in glioma cells significantly diminished tumor growth in orthotopic mouse xenografts. The relevance of our studies for human disease was confirmed by analysis of a human GBM genome database, which revealed that high RelB expression strongly correlates with rapid tumor progression and poor patient survival rates. Thus, our findings demonstrate that RelB is an oncogenic driver of mesenchymal glioma tumor growth and invasion, highlighting the therapeutic potential of inhibiting the noncanonical NF-κB (RelB-mediated) pathway to treat these deadly tumors.  相似文献   
3.
Although immunoregulation of alloreactive human CTLs has been described, the direct influence of CD4(+) Tregs on CD8(+) cytotoxicity and the interactive mechanisms have not been well clarified. Therefore, human CD4(+)CD127(-)CD25(+)FOXP3(+) Tregs were generated in MLR, immunoselected and their allospecific regulatory functions and associated mechanisms were then tested using modified (51)Chromium release assays (Micro-CML), MLRs and CFSE-based multi-fluorochrome flow cytometry proliferation assays. It was observed that increased numbers of CD4(+)CD127(-)CD25(+)FOXP3(+) cells were generated after a 7 day MLR. After immunoselection for CD4(+)CD127(-)CD25(+) cells, they were designated as MLR-Tregs. When added as third component modulators, MLR-Tregs inhibited the alloreactive proliferation of autologous PBMC in a concentration dependent manner. The inhibition was quasi-antigen specific, in that the inhibition was non-specific at higher MLR-Treg modulator doses, but non-specificity disappeared with lower numbers at which specific inhibition was still significant. When tested in micro-CML assays CTL inhibition occurred with PBMC and purified CD8(+) responders. However, antigen specificity of CTL inhibition was observed only with unpurified PBMC responders and not with purified CD8(+) responders or even with CD8(+) responders plus Non-T "APC". However, allospecificity of CTL regulation was restored when autologous purified CD4(+) T cells were added to the CD8(+) responders. Proliferation of CD8(+) cells was suppressed by MLR-Tregs in the presence or absence of IL-2. Inhibition by MLR-Tregs was mediated through down-regulation of intracellular perforin, granzyme B and membrane-bound CD25 molecules on the responding CD8(+) cells. Therefore, it was concluded that human CD4(+)CD127(-)CD25(+)FOXP3(+) MLR-Tregs down-regulate alloreactive cytotoxic responses. Regulatory allospecificity, however, requires the presence of cognate responding CD4(+) T cells. CD8(+) CTL regulatory mechanisms include impaired proliferation, reduced expression of cytolytic molecules and CD25(+) activation epitopes.  相似文献   
4.
Kaposi''s sarcoma (KS)-associated herpesvirus (KSHV) is the causative agent of KS, an important AIDS-associated malignancy. KSHV expresses at least 18 different mature microRNAs (miRNAs). We identified interleukin-1 receptor (IL-1R)-associated kinase 1 (IRAK1) as a potential target of miR-K12-9 (miR-K9) in an array data set examining changes in cellular gene expression levels in the presence of KSHV miRNAs. Using 3′-untranslated region (3′UTR) luciferase reporter assays, we confirmed that miR-K9 and other miRNAs inhibit IRAK1 expression. In addition, IRAK1 expression is downregulated in cells transfected with miR-K9 and during de novo KSHV infection. IRAK1 is an important component of the Toll-like receptor (TLR)/IL-1R signaling cascade. The downregulation of IRAK1 by miR-K9 resulted in the decreased stimulation of NF-κB activity in endothelial cells treated with IL-1α and in B cells treated with a TLR7/8 agonist. Interestingly, miR-K9 had a greater effect on NF-κB activity than did a small interfering RNA (siRNA) targeting IRAK1 despite the more efficient downregulation of IRAK1 expression with the siRNA. We hypothesized that KSHV miRNAs may also be regulating a second component of the TLR/IL-1R signaling cascade, resulting in a stronger phenotype. Reanalysis of the array data set identified myeloid differentiation primary response protein 88 (MYD88) as an additional potential target. 3′UTR luciferase reporter assays and Western blot analysis confirmed the targeting of MYD88 by miR-K5. The presence of miR-K9 and miR-K5 inhibited the production of IL-6 and IL-8 upon the IL-1α stimulation of endothelial cells. These results demonstrate KSHV-encoded miRNAs regulating the TLR/IL-1R signaling cascade at two distinct points and suggest the importance of these pathways during viral infection.  相似文献   
5.
Date palm is a very important crop in western Asia and northern Africa, and it is the oldest domesticated fruit tree with archaeological records dating back 5000 years. The huge economic value of this crop has generated considerable interest in breeding programs to enhance production of dates. One of the major limitations of these efforts is the uncertainty regarding the number of date palm cultivars, which are currently based on fruit shape, size, color, and taste. Whole mitochondrial and plastid genome sequences were utilized to examine single nucleotide polymorphisms (SNPs) of date palms to evaluate the efficacy of this approach for molecular characterization of cultivars. Mitochondrial and plastid genomes of nine Saudi Arabian cultivars were sequenced. For each species about 60 million 100 bp paired-end reads were generated from total genomic DNA using the Illumina HiSeq 2000 platform. For each cultivar, sequences were aligned separately to the published date palm plastid and mitochondrial reference genomes, and SNPs were identified. The results identified cultivar-specific SNPs for eight of the nine cultivars. Two previous SNP analyses of mitochondrial and plastid genomes identified substantial intra-cultivar ( = intra-varietal) polymorphisms in organellar genomes but these studies did not properly take into account the fact that nearly half of the plastid genome has been integrated into the mitochondrial genome. Filtering all sequencing reads that mapped to both organellar genomes nearly eliminated mitochondrial heteroplasmy but all plastid SNPs remained heteroplasmic. This investigation provides valuable insights into how to deal with interorganellar DNA transfer in performing SNP analyses from total genomic DNA. The results confirm recent suggestions that plastid heteroplasmy is much more common than previously thought. Finally, low levels of sequence variation in plastid and mitochondrial genomes argue for using nuclear SNPs for molecular characterization of date palm cultivars.  相似文献   
6.
The role of polyketide and non‐ribosomal proteins from the class of small molecule metabolism of Mycobacterium tuberculosis is well documented in envelope organization, virulence, and pathogenesis. Consequently, the identification of T cell epitopes from these proteins could serve to define potential antigens for the development of vaccines. Fourty‐one proteins from polyketide and non‐ribosomal peptide synthesis of small molecule metabolism proteins of M tuberculosis H37Rv were analyzed computationally for the presence of HLA class I binding nanomeric peptides. All possible overlapping nanomeric peptide sequences from 41 small molecule metabolic proteins were generated through in silico and analyzed for their ability to bind to 33 alleles belonging to A, B, and C loci of HLA class I molecule. Polyketide and non‐ribosomal protein analyses revealed that 20% of generated peptides were predicted to bind HLA with halftime of dissociation T1/2 ≥ 100 minutes, and 77% of them were mono‐allelic in their binding. The structural bases for recognition of nanomers by different HLA molecules were studied by structural modeling of HLA class I‐peptide complexes. Pathogen peptides that could mimic as self‐peptides or partially self‐peptides in the host were excluded using a comparative study with the human proteome; thus, subunit or DNA vaccines will have more chance of success.  相似文献   
7.
Copper, although known as a micronutrient, has a pivotal role in modulating the cellular metabolism. Many studies have reported the role of copper in angiogenesis. Copper chaperones are intracellular proteins that mediate copper trafficking to various cell organelles. However, the role and function of copper chaperones in relation to angiogenesis has to be further explored. The intracellular copper levels when in excess are deleterious and certain mutations of copper chaperones have been shown to induce cell death and influence various cellular metabolisms. The study of these chaperones will be helpful in understanding the players in the cascade of events in angiogenesis and their role in cellular metabolic pathways. In this review we have briefly listed the copper chaperones associated with angiogenic and metabolic signalling and their function.  相似文献   
8.
9.
ObjectiveThis study was conducted to assess the incidence of sudden cardiac death (SCD) in post myocardial infarction patients and to determine the predictive value of various risk markers in identifying cardiac mortality and SCD.MethodsLeft ventricular function, arrhythmias on Holter and microvolt T wave alternans (MTWA) were assessed in patients with prior myocardial infarction and ejection fraction ≤ 40%. The primary outcome was a composite of cardiac death and resuscitated cardiac arrest during follow up. Secondary outcomes included total mortality and SCD.ResultsFifty-eight patients were included in the study. Eight patients (15.5%) died during a mean follow-up of 22.3 ± 6.6 months. Seven of them (12.1%) had SCD. Among the various risk markers studied, left ventricular ejection fraction (LVEF) ≤ 30% (Hazard ratio 5.6, 95% CI 1.39 to 23) and non-sustained ventricular tachycardia (NSVT) in holter (5.7, 95% CI 1.14 to 29) were significantly associated with the primary outcome in multivariate analysis. Other measures, including QRS width, heart rate variability, heart rate turbulence and MTWA showed no association.ConclusionsAmong patients with prior myocardial infarction and reduced left ventricular function, the rate of cardiac death was substantial, with most of these being sudden cardiac death. Both LVEF ≤30% and NSVT were associated with cardiac death whereas only LVEF predicted SCD. Other parameters did not appear useful for prediction of events in these patients. These findings have implications for decision making for the use of implantable cardioverter defibrillators for primary prevention in these patients.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号