首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  免费   1篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2010年   1篇
  2009年   2篇
  2005年   1篇
  2004年   2篇
  2003年   1篇
  1999年   1篇
  1998年   3篇
  1996年   1篇
  1990年   2篇
  1987年   2篇
  1983年   1篇
排序方式: 共有20条查询结果,搜索用时 171 毫秒
1.
2.
The cytotoxicity of oxysterols including 7-ketocholesterol, -epoxide, cholestanetriol and 25-hydroxycholesterol and the possible protecting effect of -tocopherol on cholestanetriol and 25-hydroxycholesterol-induced cytotoxicity were investigated in primary cultures of porcine ovarian granulosa cells. Cell viability as determined by % trypan blue staining and mitochondrial function as determined using 3-[4,5-dimethylthiazol-2-yl]-2,5- diphenyltetrazolium bromide (MTT) reduction were decreased significantly after 24 h exposure to 2.5 M -epoxide, cholestanetriol and 25-hydroxycholesterol. 7-ketocholesterol (2.5 M) did not affect cell viability or mitochondrial function under the same culture conditions. The specific activities of catalase and superoxide dismutase, two antioxidant defense enzymes were increased significantly (p < 0.01) following 24 h exposure to 2.5 M concentrations of cholestanetriol while only superoxide dismutase was increased in 25-hydroxycholesterol-treated cells (p < 0.001). Specific activity of glutathione peroxidase was unchanged relative to control cells. Levels of thiobarbituric acid reactive substances remained unchanged after exposure to 7-ketocholesterol, -epoxide, cholestanetriol, 25-hydroxycholesterol and cholesterol. Administration of 1 M -tocopherol to the culture medium significantly improved cell viability and restored both superoxide dismutase and catalase activities to control levels in cholestanetriol -treated cells and only superoxide dismutase in 25-hydroxycholesterol-treated cells. These studies suggest that the cytotoxic nature of physiologically relevant concentrations of cholestanetriol and 25-hydroxycholesterol in granulosa cells is in part due to oxidative stress, but it may be reduced in the presence of a-tocopherol.  相似文献   
3.
4.
5.
6.
Aims:  To determine the effect of a range of supplements on the bioconversion of linoleic acid to conjugated linoleic acid (CLA) by Bifidobacterium breve NCIMB 702258 in reconstituted skim milk (RSM).
Results:  Seven supplements (yeast extract, casein hydrolysate, tryptone, l -cysteine hydrochloride, sodium acetate, sodium butyrate and sodium propionate) were identified as increasing the bioconversion of linoleic acid to c9 , t 11 CLA. Using these supplements, the percentage bioconversion of linoleic acid (0·35 mg ml−l) to the c9 , t 11 CLA isomer was elevated from 15·5 ± 1·1% in 20% RSM (w/v) to 48·1 ± 2·2% in the supplemented RSM. Through additional supplementation of 20 mg m1−1 inulin and optimization of inoculum and linoleic acid concentration, the percentage bioconversion to c9 , t 11 CLA was increased to 55·0 + 3·2%.
Conclusions:  Through supplementation, the concentration of CLA produced by bifidobacteria in RSM can be increased to levels comparable to those observed in the synthetic medium cys-MRS.
Significance and Impact of the Study:  The impact of 22 supplements on the production of the c9 , t 11 CLA isomer by the strain B. breve NCIMB 702258 in milk has been determined. The results provide an understanding of the factors, which influence CLA production by bifidobacteria in RSM.  相似文献   
7.
X-linked cone and cone-rod dystrophies (XLCOD and XLCORD) are a heterogeneous group of progressive disorders that solely or primarily affect cone photoreceptors. Mutations in exon ORF15 of the RPGR gene are the most common underlying cause. In a previous study, we excluded RPGR exon ORF15 in some families with XLCOD. Here, we report genetic mapping of XLCOD to Xq26.1-qter. A significant LOD score was detected with marker DXS8045 (Zmax = 2.41 [θ = 0.0]). The disease locus encompasses the cone opsin gene array on Xq28. Analysis of the array revealed a missense mutation (c. 529T>C [p. W177R]) in exon 3 of both the long-wavelength-sensitive (LW, red) and medium-wavelength-sensitive (MW, green) cone opsin genes that segregated with disease. Both exon 3 sequences were identical and were derived from the MW gene as a result of gene conversion. The amino acid W177 is highly conserved in visual and nonvisual opsins across species. We show that W177R in MW opsin and the equivalent W161R mutation in rod opsin result in protein misfolding and retention in the endoplasmic reticulum. We also demonstrate that W177R misfolding, unlike the P23H mutation in rod opsin that causes retinitis pigmentosa, is not rescued by treatment with the pharmacological chaperone 9-cis-retinal. Mutations in the LW/MW cone opsin gene array can, therefore, lead to a spectrum of disease, ranging from color blindness to progressive cone dystrophy (XLCOD5).  相似文献   
8.
Leukocyte recruitment to inflammatory foci is generally associated with cellular activation. Recent evidence suggests that chemotactic agents can be divided into two classes, “classical chemoattractants” such as FMLP, C5a, and IL-8, which stimulate directed migration and activation events and “pure chemoattractants” such as TGF-β1 which influence actin polymerisation and movement but not oxidative burst and associated granular enzyme release. The studies reported here demonstrate that the murine S100 chemoattractant protein, CP-10, belongs to the “non-classical” group. Despite its potent chemotactic activity for neutrophils and monocytes/macrophages, CP-10 failed to increase [Ca2+]i in human or mouse PMN, although chemotaxis was inhibited by pertussis toxin, confirming the suggestion of a novel Ca2+-independent G-protein-coupled pathway for post-receptor signal transduction triggered by “pure chemoattractants.” The co-ordinated up-regulation of Mac-1 and down-regulation of L-selectin induced by FMLP on human PMN in vitro was not observed with CP-10. Quantitative changes in immediate (30 s) actin polymerisation occurred with FMLP and CP-10-treated human PMN. The relative F-actin increases induced in WEHI 265 monocytoid cells by FMLP and CP-10 was optimal at 60 s and declined over 120 s. F-actin changes reflected the concentration and potencies of the agonists required to provoke chemotaxis. After 90 min, CP-10 profoundly altered cell shape and increased both cell size and F-actin within pseudopodia. These changes are typical of those mediating leukocyte deformability, and CP-10 may mediate leukocyte retention within microcapillaries and thereby contribute to the initiation of inflammation in vascular beds. © 1996 Wiley-Liss, Inc.  相似文献   
9.
Suspension cultures of isolated rat hepatocytes were used to investigate whether 7-ketocholesterol and cholestane-3,5,6-triol exert oxidative stress in cells as manifested by increased lipid peroxidation and the induction of the antioxidant enzymes catalase, glutathione peroxidase and superoxide dismutase. The oxysterols were found to increase the levels of both superoxide dismutase and catalase and to have variable effects on glutathione peroxidase activity. Increased lipid peroxidation was not observed, indicating that the endogenous antioxidant defense system was capable of protecting against any oxidative stress that might otherwise by exerted by 7-ketocholesterol or cholestane-3,5,6-triol. Covi-ox, a natural tocopherol blend reduced the effects of both oxysterols on the antioxidant enzymes. A concurrent reduction in the production of thiobarbituric acid-reactive substances in Covi-ox-treated cells is indirect evidence that reactive oxygen species were produced by oxysterols in hepatocyte suspension cultures.  相似文献   
10.
This study was designed to isolate different strains of the genus Bifidobacterium from the fecal material of neonates and to assess their ability to produce the cis-9, trans-11 conjugated linoleic acid (CLA) isomer from free linoleic acid. Fecal material was collected from 24 neonates aged between 3 days and 2 months in a neonatal unit (Erinville Hospital, Cork, Ireland). A total of 46 isolates from six neonates were confirmed to be Bifidobacterium species based on a combination of the fructose-6-phosphate phosphoketolase assay, RAPD [random(ly) amplified polymorphic DNA] PCR, pulsed-field gel electrophoresis (PFGE), and partial 16S ribosomal DNA sequencing. Interestingly, only 1 of the 11 neonates that had received antibiotic treatment produced bifidobacteria. PFGE after genomic digestion with the restriction enzyme XbaI demonstrated that the bifidobacteria population displayed considerable genomic diversity among the neonates, with each containing between one and five dominant strains, whereas 11 different macro restriction patterns were obtained. In only one case did a single strain appear in two neonates. All genetically distinct strains were then screened for CLA production after 72 h of incubation with 0.5 mg of free linoleic acid ml(-1) by using gas-liquid chromatography. The most efficient producers belonged to the species Bifidobacterium breve, of which two different strains converted 29 and 27% of the free linoleic acid to the cis-9, trans-11 isomer per microgram of dry cells, respectively. In addition, a strain of Bifidobacterium bifidum showed a conversion rate of 18%/microg dry cells. The ability of some Bifidobacterium strains to produce CLA could be another human health-promoting property linked to members of the genus, given that this metabolite has demonstrated anticarcinogenic activity in vitro and in vivo.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号